Exercise Sheet 2

These exercises will be discussed on November 11

Exercise 2.1 (Complex tori)

a) Show that the quotient $\mathbb{C} / \mathbb{Z}[i]$ is naturally a Riemann surface. More generally, argue the same for \mathbb{C} / L, where $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ for \mathbb{R}-linearly independent complex numbers $\omega_{1}, \omega_{2} \in \mathbb{C}$.
b) Show that a quotient \mathbb{C} / L with L as in the previous part is homeomorphic to $S^{1} \times S^{1}$ (as a topological real manifold), in particular it is compact.
c) Let $m \in \mathbb{Z}$. Show that the multiplication map

$$
[m]: \mathbb{C} / L \rightarrow \mathbb{C} / L, \quad[z] \mapsto[m \cdot z]
$$ is holomorphic. Compute the degree and the ramification points.

Exercise 2.2 (Hyperelliptic curves) Let $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{2 g+2}\right)$ be a complex polynomial with $2 g+2$ distinct roots. We also define the polynomial $g(u)=u^{2 g+2} f(1 / u)=$ $\left(1-a_{1} u\right)\left(1-a_{2} u\right) \ldots\left(1-a_{3} u\right)$.
a) Show that the two affine curves $X_{0}=\left\{(x, y) \mid y^{2}=f(x)\right\}$ and $X_{1}=\left\{(u, v) \mid v^{2}=\right.$ $g(u)\}$ are nonsingular, hence Riemann surfaces.
b) We consider the two open subsets $V_{0}=\left\{(x, y) \in X_{0} \mid x \neq 0\right\}$ and $V_{1}=\{(u, v) \mid u \neq$ $0\}$. Show that

$$
\phi: V_{0} \longrightarrow V_{1}, \quad \phi(x, y)=\left(\frac{1}{x}, \frac{y}{x^{g+1}}\right)
$$

is a biholomorphism.
c) Show that we can glue X_{0} and X_{1} along the open sets U_{0}, U_{1} to obtain a compact Riemann surface $X=X_{0} \cup X_{1}$. Prove that this surface has a natural map $X \rightarrow \mathbb{P}^{1}$ of degree two and compute the ramification points.
Exercise 2.3 (Maps to \mathbb{P}^{1}) Here we consider $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$, where $\infty=[0,1]$.
a) We fix the local coordinate z around $0 \in \mathbb{C}$. Let $f: U \rightarrow \mathbb{P}^{1}$ be an holomorphic map in a neighborhood of 0 such that $f(0)=\infty$ and mult $_{0}(f)=e$. Show that in a punctured neighborhood of 0 we can write $f(z)=\frac{g(z)}{z^{e}}$, where $g(z)$ is holomorphic and $g(0) \neq 0$.
b) Let $F: \mathbb{C} \rightarrow \mathbb{P}^{1}$ be an holomorphic map such that $F^{-1}(0)=\left\{p_{1}, \ldots, p_{n}\right\}$ and $F^{-1}(\infty)=\left\{q_{1}, \ldots, q_{m}\right\}$ with $e_{i}=\operatorname{mult}_{p_{i}}(F)$ and $f_{i}=\operatorname{mult}_{q_{i}}(F)$. We have an induced map $f: \mathbb{C} \backslash\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow \mathbb{C}$: show that we can write it as

$$
f(z)=\frac{\left(z-p_{1}\right)^{e_{1}}\left(z-p_{2}\right)^{e_{2}} \ldots\left(z-p_{n}\right)^{e_{m}}}{\left(z-q_{1}\right)^{f_{1}}\left(z-q_{2}\right)^{f_{2}} \ldots\left(z-q_{n}\right)^{f_{n}}} \cdot g(z)
$$

where $g: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and never zero.
c) Show that any holomorphic map $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ has the form

$$
F:\left[X_{0}, X_{1}\right] \mapsto\left[F_{0}\left(X_{0}, X_{1}\right), F_{1}\left(X_{0}, X_{1}\right)\right]
$$

where $F_{0}, F_{1} \in \mathbb{C}\left[X_{0}, X_{1}\right]$ are two homogeneous polynomials of the same degree and no common roots

