Exercise Sheet 8

If you want your solutions to be corrected, you should hand them in by Monday, June 17.
Please write your name and immatriculation number on top of every exercise

Exercise $8.1(2+2+2$ points $)$
a) Find the prime factorization of $(2),(5),(11)$ in $\mathbb{Q}(i)$.
b) Find the prime factorization of (2) in $\mathbb{Q}(\sqrt{-23})$.
c) Fact: $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}=\mathbb{Z}[\sqrt[3]{2}]$. Use this to compute the factorization of (7), (29), (31) in $\mathbb{Q}(\sqrt[3]{2})$.

Exercise $8.2\left(2+1+4+4+4\right.$ points) Let K be a number field and \mathcal{O}_{K} its field of integers.
a) Suppose $K=\mathbb{Q}(\alpha)$ and that $[K: \mathbb{Q}]=n$. Assume that K / \mathbb{Q} is a Galois extension. Let $\operatorname{disc}(\alpha):=\operatorname{disc}\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$. Prove that $\sqrt{\operatorname{disc}(\alpha)} \in K$.

The rest is Marcus, Exercise 3.18. We are going to prove that $\mathcal{O}_{\mathbb{Q}\left(\zeta_{23}\right)}=\mathbb{Z}\left[\zeta_{23}\right]$ is not an UFD. Consider the number fields $K=\mathbb{Q}(\sqrt{-23})$ and $L=\mathbb{Q}\left(\zeta_{23}\right)$. Let also $\alpha=\frac{1+\sqrt{-23}}{2}$ and consider the prime ideal $P=(2, \alpha) \subseteq \mathcal{O}_{K}$.
b) Prove that $K \subseteq L$.
c) Let Q be a prime ideal in \mathcal{O}_{L} lying over P. Prove that $f_{Q}(P)=11$ and conclude that $P \cdot \mathcal{O}_{L}=Q$ in \mathcal{O}_{L}. Hint: use Exercises 7.1 and 7.3.
d) Prove that $P^{3}=(\alpha-2)$. Then, using the ideal norm, show that P is not principal.
e) Using the ideal norm, prove that Q is not principal.

For the next exercise, recall the following fact. Let K be a number field, \mathcal{O}_{K} its ring of integers and $p \in \mathbb{Z}$ a prime. We have a factorization $p \mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{r}^{e_{r}}$ with the corresponding inertia degrees $f_{i}=f_{\mathfrak{p}_{i}}(p)$. Then we have proved in the lectures that

$$
\operatorname{dim}_{\mathbb{F}_{p}}\left(\mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}\right)=e_{i} f_{i} .
$$

Exercise 8.3 ($2+3+1$ points) Let K be a number field and \mathcal{O}_{K} its ring of integers. Let $I \subseteq \mathcal{O}_{K}$ be a nonzero ideal.
a) Prove that the quotient ring \mathcal{O}_{K} / I is finite.

Then, it makes sense to define the absolute norm of I as the number of elements in this quotient $\|I\|:=\left|\mathcal{O}_{K} / I\right|$.
b) Now let $\mathcal{N}_{K / \mathbb{Q}}$ be the ideal norm: prove that $\mathcal{N}_{K / \mathbb{Q}}(I)=(\|I\|)$ as ideals in \mathbb{Z}.
c) Prove that if $J \subseteq \mathcal{O}_{K}$ is another nonzero ideal, then $\|I \cdot J\|=\|I\| \cdot\|J\|$.

Exercise 8.4 (3 points) Let K be a number field and $n>0$ a positive integer. Show that there are only finitely many ideals $I \subset \mathcal{O}_{K}$ such that $\|I\|<n$.

Exercise 8.5 ($2+3$ points) Let $K=\mathbb{Q}(\alpha)$ be a number field of degree $n, \alpha \in \mathcal{O}_{K}$ an integral primitive element, $f \in \mathbb{Z}[X]$ the minimal polynomial of α, p a prime number and $\bar{f} \in \mathbb{F}_{p}[X]$ the reduction of f modulo p.
a) Show that $\mathfrak{c}:=\left\{x \in \mathcal{O}_{K}: x \mathcal{O}_{K} \subset \mathbb{Z}[\alpha]\right\}$ is a nonzero ideal of \mathcal{O}_{K}.
b) Assume that $(p)+\mathfrak{c}=\mathcal{O}_{K}$. Construct a ring isomorphism

$$
\mathcal{O}_{K} /(p) \xrightarrow{\sim} \mathbb{F}_{p}[X] /(\bar{f}) .
$$

Exercise $8.6\left(2+5\right.$ points) Let K be a number field, $I \subset \mathcal{O}_{K}$ an ideal.
a) Prove that if $a \in I$ then $\|I\|$ divides $N_{K / \mathbb{Q}}(a)$.
b) Prove that $(\|I\|) \subset \mathbb{Z}$ is the ideal generated by the set $\left\{N_{K / \mathbb{Q}}(a): a \in I\right\}$. (Hint: You can assume, or also prove, the following, "weak approximation" theorem: let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be distinct nonzero prime ideals of \mathcal{O}_{K} and a_{1}, \ldots, a_{n} be nonnegative integers. Then there exists $x \in \mathcal{O}_{K}$ such that $v_{\mathfrak{p}_{i}}(x)=a_{i}$ where $v_{\mathfrak{p}_{i}}$ is the valuation associated to \mathfrak{p}_{i}. Feel free to assume K / \mathbb{Q} Galois, if it makes life easier.)

Exercise 8.7 (4+4 points) Let $K=\mathbb{Q}(\alpha)$ where $\alpha=\sqrt{-5}, I=(120,11 \alpha-19) \subset \mathcal{O}_{K}$.
a) Find all primes p such that $I \cap \mathbb{Z} \subset(p)$.
b) Find the prime factorization of I.

