

Exercise Sheet 8

If you want your solutions to be corrected, you should hand them in by Monday, June 17. Please write your name and immatriculation number on top of every exercise

Exercise 8.1 (2+2+2 points)

- a) Find the prime factorization of (2), (5), (11) in $\mathbb{Q}(i)$.
- b) Find the prime factorization of (2) in $\mathbb{Q}(\sqrt{-23})$.
- c) Fact: $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})} = \mathbb{Z}[\sqrt[3]{2}]$. Use this to compute the factorization of (7), (29), (31) in $\mathbb{Q}(\sqrt[3]{2})$.

Exercise 8.2 (2+1+4+4+4 points) Let K be a number field and \mathcal{O}_K its field of integers.

a) Suppose $K = \mathbb{Q}(\alpha)$ and that $[K : \mathbb{Q}] = n$. Assume that K/\mathbb{Q} is a Galois extension. Let $\operatorname{disc}(\alpha) := \operatorname{disc}(1, \alpha, \alpha^2, \dots, \alpha^{n-1})$. Prove that $\sqrt{\operatorname{disc}(\alpha)} \in K$.

The rest is Marcus, Exercise 3.18. We are going to prove that $\mathcal{O}_{\mathbb{Q}(\zeta_{23})} = \mathbb{Z}[\zeta_{23}]$ is not an UFD. Consider the number fields $K = \mathbb{Q}(\sqrt{-23})$ and $L = \mathbb{Q}(\zeta_{23})$. Let also $\alpha = \frac{1+\sqrt{-23}}{2}$ and consider the prime ideal $P = (2, \alpha) \subseteq \mathcal{O}_K$.

- b) Prove that $K \subseteq L$.
- c) Let Q be a prime ideal in \mathcal{O}_L lying over P. Prove that $f_Q(P) = 11$ and conclude that $P \cdot \mathcal{O}_L = Q$ in \mathcal{O}_L . *Hint:* use Exercises 7.1 and 7.3.
- d) Prove that $P^3 = (\alpha 2)$. Then, using the ideal norm, show that P is not principal.
- e) Using the ideal norm, prove that Q is not principal.

For the next exercise, recall the following fact. Let K be a number field, \mathcal{O}_K its ring of integers and $p \in \mathbb{Z}$ a prime. We have a factorization $p\mathcal{O}_K = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_r^{e_r}$ with the corresponding inertia degrees $f_i = f_{\mathfrak{p}_i}(p)$. Then we have proved in the lectures that

$$\dim_{\mathbb{F}_p} \left(\mathcal{O}_K / \mathfrak{p}_i^{e_i} \right) = e_i f_i.$$

Exercise 8.3 (2+3+1 points) Let K be a number field and \mathcal{O}_K its ring of integers. Let $I \subseteq \mathcal{O}_K$ be a nonzero ideal.

a) Prove that the quotient ring \mathcal{O}_K/I is finite.

Then, it makes sense to define the *absolute norm* of I as the number of elements in this quotient $||I|| := |\mathcal{O}_K/I|$.

- b) Now let $\mathcal{N}_{K/\mathbb{Q}}$ be the ideal norm: prove that $\mathcal{N}_{K/\mathbb{Q}}(I) = (||I||)$ as ideals in \mathbb{Z} .
- c) Prove that if $J \subseteq \mathcal{O}_K$ is another nonzero ideal, then $||I \cdot J|| = ||I|| \cdot ||J||$.

Exercise 8.4 (3 points) Let K be a number field and n > 0 a positive integer. Show that there are only finitely many ideals $I \subset \mathcal{O}_K$ such that ||I|| < n.

Exercise 8.5 (2+3 points) Let $K = \mathbb{Q}(\alpha)$ be a number field of degree $n, \alpha \in \mathcal{O}_K$ an integral primitive element, $f \in \mathbb{Z}[X]$ the minimal polynomial of α , p a prime number and $\overline{f} \in \mathbb{F}_p[X]$ the reduction of f modulo p.

- a) Show that $\mathfrak{c} := \{x \in \mathcal{O}_K : x\mathcal{O}_K \subset \mathbb{Z}[\alpha]\}$ is a nonzero ideal of \mathcal{O}_K .
- b) Assume that $(p) + \mathfrak{c} = \mathcal{O}_K$. Construct a ring isomorphism

$$\mathcal{O}_K/(p) \xrightarrow{\sim} \mathbb{F}_p[X]/(f).$$

Exercise 8.6 (2+5 points) Let K be a number field, $I \subset \mathcal{O}_K$ an ideal.

- a) Prove that if $a \in I$ then ||I|| divides $N_{K/\mathbb{Q}}(a)$.
- b) Prove that $(||I||) \subset \mathbb{Z}$ is the ideal generated by the set $\{N_{K/\mathbb{Q}}(a) : a \in I\}$. (*Hint*: You can assume, or also prove, the following, "weak approximation" theorem: let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be distinct nonzero prime ideals of \mathcal{O}_K and a_1, \ldots, a_n be nonnegative integers. Then there exists $x \in \mathcal{O}_K$ such that $v_{\mathfrak{p}_i}(x) = a_i$ where $v_{\mathfrak{p}_i}$ is the valuation associated to \mathfrak{p}_i . Feel free to assume K/\mathbb{Q} Galois, if it makes life easier.)

Exercise 8.7 (4+4 points) Let $K = \mathbb{Q}(\alpha)$ where $\alpha = \sqrt{-5}$, $I = (120, 11\alpha - 19) \subset \mathcal{O}_K$.

- a) Find all primes p such that $I \cap \mathbb{Z} \subset (p)$.
- b) Find the prime factorization of I.