Exercise Sheet 7
If you want your solutions to be corrected, you should hand them in by Monday, June 3. Please write your name and immatriculation number on top of every exercise

Exercise 7.1 ($1+2+2$ points) Let $\mathbb{Q} \subseteq K \subseteq L$ be number fields and $\mathbb{Z} \subseteq \mathcal{O}_{K} \subseteq \mathcal{O}_{L}$ the corresponding rings of integers. Let also $p \in \mathbb{Z}$ be a prime, $P \subseteq \mathcal{O}_{K}$ a prime ideal that lies over p and $Q \subseteq \mathcal{O}_{L}$ a prime ideal that lies over P.
a) Show that Q lies over p.
b) Show that the ramification index is multiplicative: $e_{Q}(p)=e_{Q}(P) \cdot e_{P}(p)$.
c) Show that the inertia degree is multiplicative: $f_{Q}(p)=f_{Q}(P) \cdot f_{P}(p)$.

Exercise 7.2 (2+1+4+4 points) Let $\Phi_{n}(X) \in \mathbb{Z}[X]$ be the d-th cyclotomic polynomial. By definition, this is the minimal polynomial of ζ_{n} over \mathbb{Q}. Since Φ_{n} has integer coefficients, we can define analogous cyclotomic polynomials $\Phi_{n}(X)$ with coefficients in any ring A, thanks to the canonical map $\mathbb{Z} \rightarrow A$.
a) Prove that $X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)$.

Let k be a field of characteristic zero, or of positive characteristic p such that $p \nmid n$.
b) Prove that $X^{n}-1$ is squarefree in $k[X]$.
c) Prove that the roots of $\Phi_{n}(X)$ in k correspond to primitive n-th roots of unity: by definition, these are the elements of the multiplicative group k^{*} of order exactly n.

Now consider a finite field \mathbb{F}_{p} such that $p \nmid n$. Recall that every finite extension K / \mathbb{F}_{p} is Galois, with Galois group generated by the Frobenius automorphism $F: K \rightarrow K, \alpha \mapsto \alpha^{p}$.
d) Let $g_{i}(X)$ be an irreducible factor of $\Phi_{n}(X)$ in $\mathbb{F}_{p}[X]$, and let $\mathbb{F}_{p}(\alpha)=\mathbb{F}_{p}[X] /\left(g_{i}(X)\right)$ be the corresponding field extension. Prove that $\left[\mathbb{F}_{p}(\alpha): \mathbb{F}_{p}\right]=f$, where f is the order of p in the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{*}$.

Exercise 7.2 ($1+3+3+4$ points) Here we consider splitting of primes in cyclotomic extensions $\mathbb{Q}\left(\zeta_{n}\right)$. Let $p \in \mathbb{Z}$ be a prime: since the extension $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ is Galois, we know that the ramification indexes and the inertia degrees for p are all the same: this means that p splits in $\mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathbb{Z}\left[\zeta_{n}\right]$ as

$$
p \mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathfrak{p}_{1}^{e} \ldots \mathfrak{p}_{r}^{e}, \quad f_{\mathfrak{p}_{i}}(p)=f
$$

We want to compute e, f, r.
a) Show that $e \cdot f \cdot r=\varphi(n)$.

Suppose first that $n=p^{k}$.
b) Consider the factorization of $X^{p^{k}}-1$ in $\mathbb{F}_{p}[X]$ and conclude that $e=\varphi\left(p^{k}\right), f=$ $1, r=1$.

Suppose now that $n=m$ with p, m coprime.
c) Using Exercise 7.2.b and Exercise 7.2.d show that $e=1$ and that f is the order of p in the group $(\mathbb{Z} / n \mathbb{Z})^{*}$.

Now suppose that $n=p^{k} \cdot m$, with p, m coprime.
d) Consider the intermediate extensions $\mathbb{Q}\left(\zeta_{m}\right), \mathbb{Q}\left(\zeta_{p^{k}}\right) \subseteq \mathbb{Q}\left(\zeta_{n}\right)$ and conclude that $e=$ $\varphi\left(p^{k}\right)$ and that f is the order of p in the group $(\mathbb{Z} / n \mathbb{Z})^{*}$. You will need Exercise 7.1.

