

Exercise Sheet 6

If you want your solutions to be corrected, you should hand them in by Monday, May 27. Please write your name and immatriculation number on top of every exercise

Exercise 6.1 (3+3+3 points)

- a) Let A be a UFD. Show that irreducible elements are prime elements.
- b) Show that in a Noetherian ring every element can be written (non-uniquely) as product of finitely many irreducible elements.
- c) Let A be a Dedekind domain. Show that if A is a UFD then A is a PID.

Exercise 6.2 (4 points) Is the ring $\mathbb{Z}[X]$ a Dedekind domain? Motivate your answer.

Exercise 6.3 (3+3 points) Let A be a Dedekind domain. Let $I = \mathfrak{p}_1^{n_1} \dots \mathfrak{p}_r^{n_r}$ and $J = \mathfrak{q}_1^{m_1} \dots \mathfrak{q}_s^{m_s}$ be two nonzero ideals, written in terms of their unique factorization into prime ideals.

- a) Write the unique factorization of the ideal I + J.
- b) Write the unique factorization of the ideal $I \cap J$.