Exercise Sheet 5

If you want your solutions to be corrected, you should hand them in by Monday, May 20.
Please write your name and immatriculation number on top of every exercise

For the first exercise, we will need the a fact, whose proof is in Marcus, Theorem 12. Let K, L be two number fields and suppose that the composite field $K L$ has degree $[K L$: $\mathbb{Q}]=[K: \mathbb{Q}][L: \mathbb{Q}]$. We denote by $\mathcal{O}_{K}, \mathcal{O}_{L}$ the respective rings of integers, and by $\mathcal{O}_{L} \mathcal{O}_{L}$ the composite ring.

$$
\mathcal{O}_{K} \mathcal{O}_{L}=\left\{a_{1} b_{1}+\cdots+a_{r} b_{r} \mid a_{i} \in \mathcal{O}_{K}, b_{i} \in \mathcal{O}_{L}\right\}
$$

Consider also the two discriminants $\operatorname{disc}(K), \operatorname{disc}(L)$ and their greatest common divisor

$$
d=\operatorname{gcd}(\operatorname{disc}(K), \operatorname{disc}(L)) .
$$

Fact: In the above notations, we have that

$$
\mathcal{O}_{K L} \subseteq \frac{1}{d} \mathcal{O}_{K} \mathcal{O}_{L} .
$$

In particular, if $d=1$, then $\mathcal{O}_{K L}=\mathcal{O}_{K} \mathcal{O}_{L}$.
With this one can solve the first exercise:
Exercise $4.1\left(2+2+2+2\right.$ points) In this exercise we will show that $\mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathbb{Z}\left[\zeta_{n}\right]$, for every $n \in \mathbb{N}$. In the exercise sessions, we proved this when n is a power of a prime.
a) Suppose that m, n are coprime. Show that $\mathbb{Q}\left(\zeta_{n m}\right)=\mathbb{Q}\left(\zeta_{n}\right) \mathbb{Q}\left(\zeta_{m}\right)$. Show moreover that $\left[\mathbb{Q}\left(\zeta_{n m}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right]\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]$.
b) Prove that $\operatorname{disc}\left(\zeta_{m}\right)$ divides a power of m. [Hint: Write $x^{m}-1=\Phi_{m}(x) g(x)$, where $\Phi_{m}(x)$ is the minimal polynomial of ζ_{m}. Then derive and apply the norm.]
c) Prove that $\mathcal{O}_{\mathbb{Q}\left(\zeta_{n m}\right)}=\mathcal{O}_{\mathbb{Q}\left(\zeta_{m}\right)} \mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}$.
d) Prove that $\mathcal{O}_{\mathbb{Q}\left(\zeta_{n}\right)}=\mathbb{Z}\left[\zeta_{n}\right]$.

Exercise 4.2 ($1+3+3$ points)
a) Let A be a domain and let $x \in \operatorname{Frac} A$. Define the set

$$
(A: x):=\{a \in A \mid a x \in A\} .
$$

Prove that $(A: x)$ is an ideal in A, and that $x \in A$ if and only if $(A: x)=A$.
b) Let A be a domain. For every maximal ideal $\mathfrak{m} \subseteq A$, we can look at the localization $A_{\mathfrak{m}}$ as a subring of Frac A. Prove that

$$
A=\bigcap_{\mathfrak{m} \text { maximal }} A_{\mathfrak{m}} .
$$

c) Let A be a noetherian domain that has at least a nonzero prime and such that for every nonzero prime \mathfrak{p}, the localization $A_{\mathfrak{p}}$ is a DVR. Prove that A is a Dedekind domain.

Exercise 4.3 ($2+3+2$ points) (Chinese Remainder Theorem) Let A be a ring. Two ideals $I, J \subseteq A$ are called coprime if $I+J=A$. Now suppose that $I_{1}, \ldots, I_{n} \subseteq A$ are pairwise coprime ideals.
a) For every $j=2, \ldots, n$ the ideals I_{1}, I_{j} are coprime, hence there are $x_{j} \in I_{1}, y_{j} \in I_{j}$ such that $x_{j}+y_{j}=1$. Let $y=y_{2} \cdot y_{3} \ldots y_{n}$. Prove that $y \in I_{2} \cdot I_{3} \ldots I_{n}$ and that $x=1-y \in I_{1}$.
b) The previous point shows that for any $j=1, \ldots, n$ there are x_{j}, y_{j} such that $x_{j} \in I_{j}$, y_{j} is in the product of all the ideals, apart from I_{j}, and $x_{j}+y_{j}=1$. Use this to prove that

$$
I_{1} I_{2} \ldots I_{n}=I_{1} \cap I_{2} \cap \cdots \cap I_{n}
$$

c) Define a natural map

$$
A / I_{1} I_{2} \ldots I_{n} \rightarrow A / I_{1} \times A / I_{2} \times \cdots \times A / I_{n}
$$

and show that it is an isomorphism.

