Exercise Sheet 4

If you want your solutions to be corrected, you should hand them in by Monday, May 13. Please write your name and immatriculation number on top of every exercise

IMPORTANT: Try to do Exercise 4.4, even if you do not wish to hand your solution in.

Exercise 4.1 (6 points) Let $K=\mathbb{Q}(\alpha)$ be a number field of degree n. Let $m_{\alpha}(X)$ be the minimal polynomial of α and let $\sigma_{1}, \ldots, \sigma_{n}: K \hookrightarrow \overline{\mathbb{Q}}$ be the embeddings of K / \mathbb{Q}. Prove that

$$
\operatorname{disc}(\alpha)=\prod_{i<j}\left(\sigma_{i}(\alpha)-\sigma_{j}(\alpha)\right)^{2}=(-1)^{\frac{n(n-1)}{2}} N_{K / \mathbb{Q}}\left(m_{\alpha}^{\prime}(\alpha)\right) .
$$

Hint: Vandermonde.
Exercise $4.2\left(2+2+2+4\right.$ points) Let $a, b \in \mathbb{Z}$.Assume that the polynomial $f(X)=X^{3}+$ $a X+b$ is irreducible over \mathbb{Q}, let α be a root of $f(X)$ and $K=\mathbb{Q}(\alpha)$.
a) Show that $f^{\prime}(\alpha) \alpha=-(2 a \cdot \alpha+3 b)$.
b) Observe that $2 a \cdot \alpha+3 b$ is a root of $g(X)=f\left(\frac{X-3 b}{2 a}\right)$. Compute $N_{K / \mathbb{Q}}(2 a \alpha+3 b)$.
c) Show that $\operatorname{disc}(\alpha)=-\left(4 a^{3}+27 b^{2}\right)$.
d) Assume $f(X)=X^{3}-X-1$. Compute an integral basis of \mathcal{O}_{K}.

Exercise $4.3(1+3+5+5+1$ points) Let m, n be two distinct squarefree integers, $m, n \neq 1$. Consider the field $K:=\mathbb{Q}(\sqrt{m}, \sqrt{n})$ and denote by \mathcal{O}_{K} its ring of integers.
a) Let $k=\frac{m n}{\operatorname{gcd}(m, n)^{2}} \in \mathbb{Z}$. Check that $\mathbb{Q}(\sqrt{k}) \subset K$.
b) Let $F \subset K$ be a subfield with $[K: F]=2$. Show that $\alpha \in \mathcal{O}_{K}$ if and only if $N_{K / F}(\alpha) \in \mathcal{O}_{F}$ and $\operatorname{Tr}_{K / F}(\alpha) \in \mathcal{O}_{F}$.
c) Show that every $\alpha \in \mathcal{O}_{K}$ can be written in the form

$$
\alpha=\frac{a+b \sqrt{m}+c \sqrt{n}+d \sqrt{k}}{2},
$$

where $a, b, c, d \in \mathbb{Z}$. (Hint: consider the trace of such an expression with rational coefficents, with respect to the three obvious quadratic subfields).
d) Assume $m \equiv 3(\bmod 4)$ and $n \equiv k \equiv 2(\bmod 4)$. Show that in the previous expression a, b are even and $c \equiv d(\bmod 2)$. (Hint: for the congruence between c and d, consider the norm with respect to $\mathbb{Q}(\sqrt{m}))$.
e) With the same assumptions of the previous point, conclude that an integral basis of \mathcal{O}_{K} is given by

$$
1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}
$$

Turn the sheet.

Exercise $4.4(1+1+1+2+3+2+2+2)$ Let A be a ring and $S \subseteq A$ a multiplicatively closed subset. Recall that the fraction ring $S^{-1} A$ is defined as the set of symbols

$$
S^{-1} A=\left\{\left.\frac{a}{s} \right\rvert\, a \in A, s \in S\right\}
$$

where the symbols are subject to the relation

$$
\frac{a}{s}=\frac{b}{t} \text { in } S^{-1} A \stackrel{\text { def }}{\Longleftrightarrow} \exists u \in S \text { s. t. uat }=u b s \text { in } A .
$$

Then $S^{-1} A$ is a ring with the usual definitions of sums and products for fractions. Prove the following properties:
a) The map $A \rightarrow S^{-1} A, a \mapsto \frac{a}{1}$ defines a canonical ring homomorphism.
b) Every element $\frac{s}{t} \in S^{-1} A$ with, $s, t \in S$ is invertible in $S^{-1} A$.
c) If $I \subseteq A$ is an ideal, then define $S^{-1} I=\left\{\left.\frac{a}{s} \right\rvert\, a \in I, s \in S\right\}$. Prove that $S^{-1} I$ is an ideal in $S^{-1} A$, and show that $S^{-1} I=S^{-1} A$ if and only if $I \cap S \neq \emptyset$.
d) Let $J \subseteq S^{-1} A$ be a proper ideal. Define $I=\left\{a \in A \left\lvert\, \frac{a}{1} \in J\right.\right\}$, show that I is an ideal in A and that $J=S^{-1} I$. Hence any proper ideal in $S^{-1} A$ is of the form $S^{-1} I$, for an ideal in A.
e) Suppose that $P \subseteq A$ is a prime ideal such that $P \cap S=\emptyset$. Prove that $S^{-1} P$ is prime in $S^{-1} A$. Show that if $P, Q \subseteq A$ are both primes such that $P \cap S=Q \cap S=\emptyset$, then $P \subseteq Q$ if and only if $S^{-1} P \subseteq S^{-1} Q$. Conclude that the map
$\{$ prime ideals $P \subseteq A \mid P \cap S=\emptyset\} \longrightarrow\left\{\right.$ prime ideals in $\left.S^{-1} A\right\}, \quad P \mapsto S^{-1} P$ is a bijection.
f) Let $I \subseteq A$ be an ideal such that $I \cap S=\emptyset$ and in A / I consider the set $\bar{S}=\{s+I \in$ $A / I \mid s \in S\}$. Show that \bar{S} is a multiplicatively closed subset in A / I, and that the map

$$
\left(S^{-1} A\right) /\left(S^{-1} I\right) \longrightarrow \bar{S}^{-1}(A / I), \quad \frac{a}{s}+S^{-1} I \mapsto \frac{a+I}{s+I}
$$

is well-defined and an isomorphism of rings.
Now, let $\mathfrak{p} \subseteq A$ be a prime and let $S=A \backslash \mathfrak{p}$. It is customary to denote $A_{\mathfrak{p}}:=S^{-1} A$, and $I_{\mathfrak{p}}:=S^{-1} I$ for any ideal $I \subseteq A$.
h) Show that the primes ideal of $A_{\mathfrak{p}}$ are in bijection with the prime ideals of A contained in \mathfrak{p}. Conclude that $A_{\mathfrak{p}}$ is local, with unique maximal ideal $\mathfrak{p}_{\mathfrak{p}}=S^{-1} \mathfrak{p}$.

To conclude, we observe that when A is a domain, the $S^{-1} A$ are just subrings of the field of fractions:
i) Suppose that A is a domain and let $S \subseteq A$ be a multiplicatively closed subset. Prove that $\frac{a}{s}=\frac{b}{t}$ in $S^{-1} A$ if and only if $t a=b s$ in A. Conclude that we can look at $S^{-1} A$ as an intermediate extension

$$
A \subseteq S^{-1} A \subseteq \operatorname{Frac} A .
$$

