SoSe 2019

Exercise Sheet 2

If you want your solutions to be corrected, you should hand them in by Monday, April 29.
Please write your name and immatriculation number on top of every exercise.
Exercise $2.1\left(2\right.$ points) Let $d \in \mathbb{Z}$ be an integer with $d \equiv 1(\bmod 4)$. Show that $\frac{1 \pm \sqrt{d}}{2}$ is integral over \mathbb{Z}.
Exercise $2.2(1+2+2+2=7$ points) Let R be an integral domain and $a, b \in R$. A common divisor of a and b is an element $c \in R$ such that $c \mid a$ and $c \mid b$. A greatest common divisor of a and b is an element d such that, if c is a common divisor of a and b then $c \mid d$.
a) Let $a, b \in R$. Show that if a greatest common divisor of a and b exists then it is unique up to multiplication by a unit.

From now on we assume that R is a UFD.
b) Show that for any $a, b \in R$ there exists a greatest common divisor.
c) Let d be a gcd of a, b. Is it true that there exist $x, y \in R$ such that $a x+b y=d$?
d) Let $a, b, c \in R$ such that $\operatorname{gcd}(a, b)=1$ and $a b=c^{n}$, for some integer $n \geq 1$. Prove that $a=u a_{1}^{n}$ and $b=v b_{1}^{n}$ for some $a_{1}, b_{1} \in R$ and units $u, v \in R^{\times}$.

Exercise $2.3\left(1+3+2+3+1+2=12\right.$ points) Let $\alpha=\frac{1+i \sqrt{11}}{2} \in \mathbb{C}$. The goal of the exercise is to prove that the ring $\mathbb{Z}[\alpha]=\{a+b \alpha: a, b \in \mathbb{Z}\} \subset \mathbb{C}$ is Euclidean, with respect to the norm function $N: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{\geq 0}$ given by $N(a+b \alpha)=a^{2}+a b+3 b^{2}$.
a) Check that $N(x)=|x|^{2}$ for all $x \in \mathbb{Z}[\alpha]$, where $|\cdot|$ is the complex absolute value.
b) Consider the parallelogram P with vertices $0, \alpha, \alpha+1,1$. Let $z \in \mathbb{C}$ be a point lying in the interior or on the perimeter of P. Prove that there exist a vertex v of P such that $|z-v|<1$.
c) Deduce that for all $z \in \mathbb{C}$, we have

$$
\min _{x \in \mathbb{Z}[\alpha]}|z-x|<1
$$

d) Let $x, y \in \mathbb{Z}[\alpha], x \neq 0$. Show that there exists $q \in \mathbb{Z}[\alpha]$ such that $N(y-q x)<N(x)$.
e) Conclude that $\mathbb{Z}[\alpha]$ is Euclidean.
f) (Extra) Prove, using the norm, that the units of $\mathbb{Z}[\alpha]$ are $\{1,-1\}$.

Exercise $2.4(3+3+2+3=11$ points) The goal of the exercise is to find all integer solutions to the Diophantine equation $x^{2}+11=y^{3}$. We will use results of the previous exercises.
a) Let $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ be a solution. Reduce the equation modulo 8 and prove that y must be odd.
b) Factorize the equation as $(x+\sqrt{-11})(x-\sqrt{-11})=y^{3}$ inside the ring $\mathbb{Z}[\alpha]$ of Exercise 2.3. Prove that $\operatorname{gcd}(x+\sqrt{-11}, x-\sqrt{-11})=1$. (Use also the previous point).
c) Deduce using 2.2.d and 2.3.f that $x+\sqrt{-11}=u^{3}$ for some $u \in \mathbb{Z}[\alpha]$.
d) Find all solutions.

