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Exercise Sheet 11

These exercises will not be corrected, but some of them will be discussed in class.

This exercise lists some essential concepts that you must know in order to pass the course.

Exercise 11.1

a) Let K be a field and K ⊂ L a field extension. Define the trace TrL/K : L→ K and
the norm NL/K : L× → K×.

b) Write one possible definition of discrete valuation ring.

c) Write one possible definition of Dedekind domain.

d) Write the definition of prime element and irreducible element in a ring.

e) Let K be a number field, L a finite extension of K, P ⊂ OL a nonzero prime ideal
and p := P∩OK the prime ideal lying under P. Write the definition of ramification
index e(P|p) and of inertia degree f(P|p).

f) Write the definition of fractional ideal.

g) Let K be a number field and I, J ⊂ K be fractional ideals. Write the definition of
I · J and prove that it is again a fractional ideal.

This exercise is a collection of small tasks that you should be able to answer in order to
successfully pass the exam.

Exercise 11.2

a) Let m > 0 be an integer. Is it true that there are only finitely many algebraic integers
α such that [Q(α) : Q] ≤ m? Prove it or give a counterexample.

b) List all the ideals of Z[
√
−7] containing 10.

c) Let K be a number field and M > 0 an integer. Is it true that there are only finitely
many α ∈ OK such that |NK/Q(α)| < M? Prove it or give a counterexample.

d) Let R ⊂ S be two principal ideal domains and let a, b ∈ R. Show that gcdR(a, b) = 1
if and only if gcdS(a, b) = 1.

e) Prove that Z[
√
−10] is not a UFD.

f) Let p be a prime number and ζp a primitive p-th root of unity. Compute NQ(ζp)/Q(1−
ζp).
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Many of the next exercises are somehow longer and harder than those that will appear in
the exam, but because of this, they are an even better preparation. Note that when trying
to solve a particular point, you can assume the validity of the previous ones, even if you
did not solve them.

Exercise 11.3 In this exercise we conclude the proof of the first case of Fermat’s Last
Theorem for regular primes. So, let p > 5 be a regular prime number, K = Q(ζp) the
corresponding cyclotomic field and K+ = Q(ζp + ζ−1p ). Suppose that there is a solution to
the equation

Xp + Y p = Zp

such that p - XY Z. Then, we have proven in class that in the ring OK we have

X + ζpY = (−ζp)m · v · αp

for certain m ∈ Z,v ∈ UK+ and α ∈ OK . We want to derive a contradiction.

a) Let β = b0 +b1ζp+ · · ·+bp−1ζ
p−1
p with bi ∈ Z and at least one bi = 0. Let also n ∈ Z.

Show that if β ≡ 0 mod nOK then bi ≡ 0 mod nOK for each i.

b) Show that there is a ∈ Z such that αp ≡ a mod pOK .

c) Show that X + ζY ≡ (−ζ)mva mod pOK and X + ζY ≡ (−ζ)−mva mod pOK .
Conclude that X + ζY − ζ2mX − ζ2m−1Y ≡ 0 mod pOK .

d) Use point (a) to get a contradiction.

Exercise 11.4 Let K = Q(α) be a number field with α integral and let n = [K : Q].

a) Let d = discK/Q(1, α, α2, . . . , αn−1). Prove that dOK ⊆ Z[α].

Now consider the polynomial f(X) = X3 − 3X + 1.

b) Show that f(X) is irreducible over Q with three real roots.

c) Let α be any root of f(X) and K = Q(α). Prove that the ideal (α + 1) is prime in
OK and conclude that OK = Z[α] + (α+ 1)OK . [Hint : for the second assertion, it is
enough to prove that the natural map Z[α]→ OK/(α+ 1) is surjective].

d) Show that 34 · OK ⊆ Z[α].

e) Show that (α+ 1)3 = 3α(α+ 2) and that α, α+ 2 ∈ UK . Conclude that OK = Z[α].
[Hint : multiply the relation OK = Z[α] + (α+ 1)OK by α+ 1 on both sides].

f) Show that OK is an UFD.

Exercise 11.5 Let K+ be a totally real number field: this means that every embedding
K+ ↪→ C is a real embedding. Let also K ⊇ K+ be a finite extension such that [K+ :
K] = 2 and K+ is totally imaginary. This means that every embedding K ↪→ C is nonreal.

a) Let UK+ and UK be the two groups of units. Show that they have the same rank as
Z-modules.

b) Show that the conjugation z 7→ z induces an automorphism K → K that fixes
K+. Show also that this is the unique nontrivial automorphism of K that fixes K+.
Furthermore, prove that for every embedding σ : K ↪→ C we have σ(α) = σ(α).
Conclude that if u ∈ UK , then u

u ∈ µK .
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c) Consider the map

φ : UK −→ µK/µ
2
K u 7→ class of

u

u

Show that φ is an homomorphism of groups and compute its kernel.

d) Prove that the quotient UK
µK ·UK+

has cardinality one or two.

e) Give a concrete example of K+,K and compute the cardinality UK
µK ·UK+

for the

example you have chosen.

Exercise 11.6 Consider the equation Y 2 = X3−51. We will prove that this has no integer
solutions; this is a particularly interesting example, since it turns out that this equation
has a solution modulo each prime p ∈ Z.

a) Let K = Q(
√
−51). Show that there are no elements of norm 3 in OK .

b) Prove that Cl(K) ∼= Z/2Z.

c) Suppose that there is an integer solution to Y 2 = X3−51. Working modulo 8, prove
that X must be odd. Show also that Y and 51 must be coprime in Z.

d) Rewrite the equation as X3 = (Y +
√
−51)(Y −

√
−51) in OK . Show that if Y +

√
−51

and Y −
√
−51 have a common prime ideal factor p, then either p = 2OK or p ⊇

(Y,
√
−51). Conclude that Y +

√
−51 and Y −

√
−51 are coprime in OK .

e) Prove that there is an ideal I ⊆ OK such that (Y +
√
−51) = I3. Conclude that I is

principal, so that there is an element β ∈ OK such that (Y +
√
−51) = (β3).

f) Show that Y +
√
−51 = ±β3. Hence, if α = 1+

√
−51
2 there are r, s ∈ Z such that

(Y − 1) + 2α = Y +
√
−51 = (r + sα)3

Derive a contradiction.

Exercise 11.7 Consider the ring A = Z
[
1
2

]
.

a) Find a multiplicatively closed subset S ⊆ Z such that A = S−1Z.

b) Find all prime ideals p ⊆ A and describe the localizations Ap.

c) Is A a Dedekind domain? Give a proof of your answer.

Exercise 11.8 Consider the number field K = Q(
√
−3,
√

2).

a) Prove that Q(
√
−3),Q(

√
2),Q(

√
−6) are all the quadratic fields contained in K.

b) Let F be one of the fields in (a). Prove that if α ∈ OK then TrK/F (α) ∈ OF . Deduce
that every α ∈ OK can be written as

α =
a

2
+
b

2

√
−3 +

c

2

√
2 +

d

2

√
−6. with a, b, c, d ∈ Z

c) Let F be one of the fields in (a). Prove that if α ∈ OK then NK/F (α) ∈ OF . Deduce
that in the expression before we have a ≡ b mod 2 and c ≡ d mod 2. Hence, an
integral basis of OK is

1,
1 +
√
−3

2
,
√

2,

√
2 +
√
−6

2
.
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d) Show that the discriminant of K is ∆K = 16 · 3 · 2 · 6.

e) Prove that OK = OQ(
√
2)[

1+
√
−3

2 ] = OQ(
√
−3)[
√

2]. Deduce that in OK we have the
prime factorizations

2OK = (
√

2OK)2, 3OK = (
√

3OK)2

[Hint : you can factor 2 and 3 first in OQ(
√
2),OQ(

√
−3) and then in OK .]

f) Show that OK is an UFD.
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