MOMENTS OF VOLTAGE TRAJECTORIES FOR STEIN'S MODEL WITH SYNAPTIC REVERSAL POTENTIALS

CHARLES E. SMITH* and MARJO V. SMITH
Department of Statistics, Box 8203, Biomathematics Graduate Program
North Carolina State University, Raleigh, North Carolina 27695-8203

(Received August 6, 1984)

Abstract
Expressions for the moments of the membrane potential in Stein's model with synaptic (excitatory and inhibitory) reversal potentials and additive white noise are presented. The mean and variance of the voltage trajectories are used to approximate the mean and standard deviation of the interspike intervals under certain conditions (Stein, 1967) that yield a small coefficient of variation. The limiting case of negligible decay and excitatory input only places a lower bound on the coefficient of variation of the interspike intervals.

1. Introduction

A modification of Stein's model (1965) for stochastic neural activity with excitatory and inhibitory synaptic reversal potentials was developed by Tuckwell (1979). On the basis of simulation results, he suggested that a coefficient of variation of the interspike intervals greater than one was due to relatively strong inhibition. This proposition has recently been further examined by Wilbur and Rinzel (1983). They found it difficult to produce interval distributions with a coefficient of variation > 1 in the physiological range of the parameters. Smith (1979) used the model with excitation only as part of a study on the responses of vestibular nerve fibers to natural and electrical stimulation. A non-Gaussian diffusion process model, somewhat similar to that of Johannesma (1968), was recently derived by Kallianpur and Wolpert (1984) using martingale limiting argument for a slightly generalized version of Tuckwell's model.

In this report, an expression for the moments of the unrestricted membrane voltage process is given (i.e., no threshold or absorbing barrier). Using the approximation method of Stein (1967, p. 53), the mean and standard deviation of the interspike intervals in this model may be approximated in the case of small "synaptic variability". In contrast to the work of Tuckwell and Wilbur and Rinzel above, our results examine the case of a small coefficient of variation. A limiting case with excitation only and a very long membrane time constant relative to the mean arrival time of inputs is also discussed.

*Supported in part by Biomedical Research Support Grant RR07071.

Author to whom correspondence should be addressed

© 1984 Australian Scientific Press
2. The Model

Following the notation of Tuckwell (1979) (with the exception that instead of his rate constant \(s \), we use \(1/\tau_m \)) the membrane potential \(V(t) \) satisfies the following stochastic differential equation whenever the voltage is below the threshold, \(r(t) \), for firing

\[
dV = -V/\tau_m \, dt + (V_E - V)a_E dP(f_E; t) + (V_I - V) a_I dP(f_I; t)
\]

where \(\tau_m \) is the membrane time constant, \(V_E(f_E) \) are the excitatory (inhibitory) reversal potentials, \(a_E \) and \(a_I \) are dimensionless positive constants, \(P(f_E; t) \) and \(P(f_I; t) \) are two independent homogeneous Poisson counting processes with intensities \(f_E \) and \(f_I \) respectively. The constants \(a_E \) and \(a_I \) scale the jump size of the Poisson processes, however the multiplicative reversal potential term results in nonlinear summation of postsynaptic potentials in the model. Let \(b_E = a_E V_E \) and \(b_I = a_I V_I \), then \(b_E(b_I) \) represent the size of an epsp (ipsp) at rest, i.e., \(V = 0 \). For simplicity, we set the initial voltage \(V(0) = 0 \), i.e. the neuron resets to the resting level. After presenting a slight generalization of the model, we derive an expression for the moments of the process \(V(t) \) in the case of no absorbing barriers, i.e., the voltage threshold, \(r(t) \), is not present. Note that without the threshold, the process \(V(t) \) is confined between the two inaccessible boundaries \(V_E > 0 \) and \(V_I < 0 \).

Denote the transition probability density function (p.d.f.) of \(V(t) \) by \(p(v, x; t) \), when the process is not restricted by an absorbing threshold, \(r(t) \). This p.d.f. is clearly a mixed density, having a continuous and a discrete or impulsive part. The initial condition (the rest level here) contributes an impulse (Dirac delta function) at the origin. Until the first jump arrives from either Poisson process, each sample path remains at a value of zero. The mass of the impulse is simply the probability of no arrivals, i.e. \(e^{-\int_{0}^{t} (b_E + b_I) dt} \).

The impulsive part of the density can cause a problem in determining the backward and forward Kolmogorov equations for the process due to its lack of differentiability in the state variable \(v \). Note that Stein’s original model (1965) also has this problem. The theorems in say, Gihman and Skorohod (1972), for determining the backward (p. 293) and forward (p. 299) Kolmogorov equations (BKE and FKE) are often used even though the formal conditions for their use are not met. This was done, for example, in Tuckwell’s analysis of the model (1979). (Note the error in the FKE, equations (12), and the resultant equation for the mean depolarization, equation (14)) were corrected in Tuckwell (1981, p. 167) with a kind acknowledgement to the first author; see also Hanson and Tuckwell (1983).) However, his subsequent analysis based on the BKE agrees well with simulations based on the stochastic differential equation over a range of parameter values. We expect, although not yet shown, that treating the p.d.f as a generalized function and treating the solution as a so-called weak solution would remove this problem.

A perhaps more realistic approach is to slightly generalize the model as follows. Add to the right hand side of equation (1), the term \(cdW(t) \), where \(c \) is a constant and \(W(t) \) is a standard Wiener process, i.e., zero mean and variance \(t \).

3. Analysis of the Model

The backward Kolmogorov equation for the transition density corresponding to equation (1a) is

\[
-\frac{\partial p}{\partial t} = -(f_E + f_I)p - x/\tau_m \frac{\partial p}{\partial x} + c^2/2 \frac{\partial^2 p}{\partial x^2} + f_E p(x + (V_E - x)a_E) + f_I p(x + (V_I - x)a_I)
\]

with natural boundary conditions at \(+/\infty \), which agrees with Tuckwell’s equation (11) with the addition of the diffusion term.

The forward Kolmogorov equation can be obtained from (2) via Gihman and Skorohod (1972, p. 299) using the inverse function method on the argument of the last two terms. The result is

\[
\frac{\partial p}{\partial t} = -(f_E + f_I)p + \frac{\partial}{\partial v}(vp/\tau_m) + c^2/2 \frac{\partial^2 p}{\partial v^2} + f_E p((v - b_E)/(1 - a_E))/(1 - a_E) + f_I p((v - b_I)/(1 - a_I))/(1 - a_I)
\]

again with natural boundary conditions. Recall that \(b_E = a_E V_E \) and \(b_I = a_I V_I \). The arguments of the last two terms correspond to Wilbur and Rinzel’s \(r_j \) and \(r_I \) functions (their equation (1)).

Rather than integrate equation (3) for each moment of the voltage trajectory, the characteristic function method for generating moments will be used. The characteristic function \(\psi(t; io) \) associated with the p.d.f. \(p(v) \) is defined as

\[
\psi(t; io) = \int_{-\infty}^{\infty} p(x) \exp(iox) \, dx
\]

Using some elementary properties of Fourier transform pairs, the transformed version of equation (3) becomes
Moments of Voltage Trajectories

\[M_s(jw) = \frac{\partial M_s(jw)}{\partial \omega} = \frac{\omega}{\tau_m} \frac{\partial}{\partial \omega} M_s(jw) - \frac{\tau_m^2}{2} M_s(jw) \]

\[+ f_E \exp[\alpha \omega b_E] M_s(jw(1-a_E)) + f_I \exp[\beta \omega b_I] M_s(jw(1-a_I)) \]

Assuming all moments exist and are finite, write \(M_s(jw) \) as a power series in terms of the moments \(\mu_n = E[\gamma^n] \)

\[M_s(jw) = \sum_{n=0}^{\infty} \mu_n (jw)^n/n! \]

substituting into (4) and equating powers of \(\omega \), the equation for \(\mu_n \), (after a little algebra and using the useful fact that multiplying polynomials means discrete convolution of coefficients) becomes

\[\frac{d}{dt} \mu_n + \mu_n/\tau_n = \frac{n}{2(n-1)} \cdot \mu_{n-2} + \sum_{k=1}^{n} \delta_{n-k} \mu_{n-k}, \quad n = 1, 2, \ldots \]

with \(\mu_n = 0 \) for \(n < 0 \) and \(\mu_0 = 1 \), and where

\[1/\tau_n = n/\tau_m + f_E (1-(1-a_E)^n) + f_I (1-(1-a_I)^n) \]

and

\[\alpha_k = f_E b_E (1-a_E)^k + f_I b_I (1-a_I)^k. \]

This is our main result. Eq. (5) is a first order linear differential equation and the forcing function on the right hand side is in terms of known functions, namely lower order moments. Alternatively, equation (5) can be written in matrix form as a system of first order equations with a vector of constants as the forcing function. Earlier we assumed existence and finiteness of the moments. This is easily checked by using induction on equation (5).

As mentioned earlier equation (5) could have been obtained for the case of \(c = 0 \) by beginning with equation (1) and using the transition characteristic function. The expression for the mean is independent of \(c \) in any case and is given by (cf. eqn. 19 of Tuckwell, 1981).

\[\mu_i(t) = \theta_0 \exp(-t/\tau_i) \]

where

\[\theta_0 = (f_E b_E + f_I b_I) \tau_i, \quad \text{and} \quad \tau_i \text{ is as given above.} \]

Note that \(\tau_i \) is always less than \(\tau_m \), i.e., the mean voltage reaches its asymptotic value faster than in the model without the reversal potential, but the asymptotic value \(\theta_0 \), is less than in Stein’s original model.

The expression for the variance is a little more complicated, namely

\[\sigma_i^2(t) = (\gamma + \epsilon \theta_0) \tau_2 [1 - \exp(-t/\tau_2)] - \theta_0 \epsilon \left[\exp(-t/\tau_2) - \exp(-t/\tau_2) \right] \]

\[\left(\frac{1 - 1}{\tau_2} \right) \]

\[- \theta_0 \epsilon \left[1 - \exp(-t/\tau_2) \right]^2, \]

where

\[\gamma = c^2 + f_E b_E + f_I b_I \]

\[\epsilon = 2(f_E b_E (1-a_E) + f_I b_I (1-a_I)) \]

Higher order moments along with non zero initial conditions on the moments can be obtained in straightforward manner using equation (5). As a check on our results, consider the limit as \(V_E \to -\infty \) and \(V_I \to -\infty \), then \(a_E \to 0 \) and \(a_I \to 0 \) and \(\alpha_k = f_E b_E (1-a_E)^k + f_I b_I (1-a_I)^k \). Thus the equations for the moments agree with those of Stein’s original model without a reversal potential in the appropriate limit with \(c = 0 \). In particular, the variance goes to \(\frac{1}{2} \tau_m \exp(-2t/\tau_m) \).

4. Approximate Interspike Interval Moments

Only a few analytical results are available for the first passage time associated with equation (1). Tuckwell (1979) calculated the mean first passage time for a special case: a constant threshold, no inhibition and a small ratio of threshold to epsp size. Since we are interested in the case of a small coefficient of variation (cv), we will use Stein’s approximation method for the mean and standard deviation of the interspike intervals (Stein, 1967, p. 53). Regular firing patterns, or small cv’s, occur in a number of neurons. For example, the peripheral vestibular nerve can have both very regular (cv = .02) and irregular (cv = 1) firing patterns in the same animal (Goldberg, Smith and Fernández, 1984).

The approximate mean interval, \(\bar{t} \), will be taken as the time when the mean voltage, \(\mu_i(t) \), crosses the threshold \(r(t) \). \(\bar{t} \) will be finite if \(\theta_0 > \inf r(t) \). Setting \(\mu_i(t) = r(t) \) in equation (6), we obtain

\[\bar{t} = -1/\tau_0 \log(1 - r(t)/\theta_0) \]

If \(r(t) \) is a constant, say \(\theta < V_E \), or \(A + B \exp(-t/\tau_1) \), one can solve (8) for \(\bar{t} \) analytically. Otherwise a zero of functions routine can be used for numerical evaluation.

For excitation only and a constant threshold, \(\theta \), \(\bar{t} \) tends to overestimate the mean interval obtained from simulations. However, \(\bar{t} \) may be greater or smaller than the corresponding estimate, \(\bar{t}^* \), from the model without a reversal potential. The expression for \(\bar{t}^* \) is

\[\bar{t}^* = -\tau_m \log(1 - \theta(f_E b_E + f_I b_I)/\tau_m) \]

For a given \(\theta, \tau_m, b_E, f_E, b_I, f_I \), if \(\bar{t}^* > \tau_c \), then \(\bar{t} < \tau_c \) and if \(\bar{t}^* < \tau_c \), then \(\bar{t}^* > \tau_c \) where \(\tau_c \) is the time at which the mean voltage trajectories for the two models cross.

The approximate standard deviation, \(\delta \), of the interspike intervals is given (via a geometric argument, Stein, 1967, equation 1.40) as

\[\delta = \sigma_t(t) |d/dt(\mu_i(t) - r(t))| \]

at \(t = \bar{t} \),

where \(\sigma_t(t) \) is determined by equation (7) and \(r(t) \) is assumed to be constant or monotonically decreasing around \(\bar{t} \). The conditions Stein gave for the approximation to
hold are: (1) the voltage distribution doesn’t change its shape drastically near \(f \), (2) the resultant \(\hat{r} \) is considerably less than the time constant of the model, (3) \(r(t) \) is nearly linear within a few standard deviations of \(f \). These conditions were stated for the model without a reversal potential but are useful for the present model as well in that the approximations agree with simulations. The appropriate conditions above are not satisfied for the examples given in Tuckwell, and Wilbur and Rinzel, who were primarily concerned with parameters that gave a large coefficient of variation. Two sets of simulation results are given below for monotonically decreasing thresholds. It is difficult to achieve regular firing patterns in this model with a constant threshold and epsps in the physiological range. The reason for this will be examined in the next section.

Table 1 compares the approximate method (denoted by *) to simulation results (number of trials \(N=1000 \) in A, B, D and 200 in C) with excitation only in four cases. \(V_E = 70 \text{ mV} \) and \(\tau_m = 5 \text{ msec} \) for all cases. The threshold \(r(t) = 10 + 100 \exp(-t/TS) \) in mVolts (Geisler and Goldberg, 1966) with \(TS = 200 \text{ msec} \). For cases A and C, \(b_E = 125 \text{ mV} \), and for cases B and D, \(b_E = 2 \text{ mV} \). The value of \(f_E \) for the four cases are 160, 10, 80 and 5 arrivals/msec. The product \(f_E b_E \), is 20 for A and B and 10 for C and D. Since \(\tau_1 \) and \(\tau_0 \) depend only on \(f_E b_E \), they will be fixed for A and B and for C and D. The agreement with the approximation method is reasonably good, case D shows that as the standard deviation increases, the discrepancy increases as expected.

<table>
<thead>
<tr>
<th>Case</th>
<th>Mean Interval (msec)</th>
<th>Standard Deviation (msec)</th>
<th>Firing Rate (sp/sec)</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.6477</td>
<td>0.14306</td>
<td>150.43</td>
<td>0.02152</td>
</tr>
<tr>
<td>A*</td>
<td>6.6557</td>
<td>0.14246</td>
<td>150.25</td>
<td>0.02140</td>
</tr>
<tr>
<td>B</td>
<td>6.6339</td>
<td>0.62822</td>
<td>150.74</td>
<td>0.09470</td>
</tr>
<tr>
<td>B*</td>
<td>6.6557</td>
<td>0.57245</td>
<td>150.25</td>
<td>0.08601</td>
</tr>
<tr>
<td>C</td>
<td>10.6172</td>
<td>0.39704</td>
<td>94.187</td>
<td>0.03740</td>
</tr>
<tr>
<td>C*</td>
<td>10.5882</td>
<td>0.41754</td>
<td>94.445</td>
<td>0.03943</td>
</tr>
<tr>
<td>D</td>
<td>10.2554</td>
<td>1.57714</td>
<td>94.510</td>
<td>0.15379</td>
</tr>
<tr>
<td>D*</td>
<td>10.5882</td>
<td>1.67509</td>
<td>94.445</td>
<td>0.15820</td>
</tr>
</tbody>
</table>

In Figure 1, simulation results (\(N=1000 \) for all points) are compared to the approximation method for a different threshold, namely \(r(t) = 10 + 100 \exp(-t/TS) \) mV with \(TS = 10 \text{ msec} \). \(b_E \) is fixed at 2 mV and \(V_E \) and \(\tau_m \) are at the same values as above. The release rate \(f_E \) takes values of 5.75, 6.25, 6.75, 7.25, 7.75, 8.25, 10, 15, 20 and 25 arrivals/msec. In Figure A, we see that the estimated mean intervals tend to be slightly longer than the simulated ones. The approximated

standard deviations in Figure B also tend to be longer than the simulated ones. The seventh point being an exception due to a few long intervals in the simulation. Figures A and B are combined in Figure C as a plot of the CV vs mean interval. The deviation between the approximations (x) and the simulations (O) increases with increasing mean interval as expected. Other simulation examples to test the approximation method can be found in Smith (1979). Note that these points represent reasonably regular firing rates at moderate arrival rates. This will not be possible for a constant threshold unless the epsps size is drastically reduced.

5. Limiting Case: Negligible Decay and Excitation Only

Here we examine the case of no inhibition and \(\tau_m \to \infty \), often called the perfect integrator model. It is intended to model situations where \(1/\theta \ll \tau_m \). Equation (1) becomes

\[
\frac{dV}{dt} = b_F (1 - \theta / V_E) dP(f_E; t).
\]

One way to write the solution to (11) is (again assuming zero initial conditions)

\[
V(t) = V_E (1 - (1 - a_E t)^k)
\]

where \(k \) is the number of jumps of \(P(f_E; t) \) up to time \(t \). Said another way, (12) is a monotonic nonlinear transformation of a Poisson counting process. The first passage times to reach a constant threshold \(\theta \) will be distributed as an Erlang probability density with parameters \(f_E \) and \(n \) with \(n \) given by

\[
n = \frac{[G(x) - (1 - \theta / V_E) \log (1 - b_E / V_E)] b_E < \theta,}{\theta - b_E}
\]

where \(G(x) \) denotes greatest integer contained in \(x \); \(n \) is simply the number of jumps to reach the threshold. The mean, standard deviation and cv of the inter spike intervals are \(n/f_E \), \(\sqrt{n/f_E} \), and \(1/\sqrt{n} \). Note that the cv does not depend on \(f_E \).

Comparing this limiting case to our original model with excitation only, it is fairly clear that the mean, standard deviation and cv are all less than the corresponding quantities from equation (1). Another comparison of interest is with the model without the reversal potential. For \(0 < b_E < \theta \) and typical physiological values for \(\theta \) and \(V_E \), \(n \) may be approximated by

\[
\hat{n} = (V_E \log (1 - \theta / V_E))/b_E.
\]

For the model without the reversal potential in the limiting case, \(\hat{n} = \theta / b_E \). For \(V_E = 70 \text{ mV} \) and \(\theta = 10 \text{ mV} \), the two values are quite similar, namely 10/\(b_E \) and 10.79/\(b_E \) respectively.

The problem with the constant threshold is that very small values of \(b_E \) are required to obtain very regular units since the cv goes as \(\sqrt{b_E} \). For the above values of \(V_E \) and \(\theta \), the limit for \(b_E = 2 \text{ mV} \) is .408. This limit is approached in simulations of equation (1) but rather slowly, for example with \(\tau_m = 5 \text{ msec} \) and \(f_E = 2.45 \text{/msec} \) the cv = .487
and the firing rate is 337 sp/sec. For a lower limit on the \(cv \) of 0.048 a \(b_E \) of 0.025 mV is required. The problem with very small values for \(b_E \) is twofold. First the limiting dependence of \(cv \) goes as the square root of \(b_E \), which requires very small values and secondly, if a small value of \(b_E \) is used the firing rate falls off drastically when the asymptotic mean voltage, \(\theta_i \), fails to reach the threshold at small values of \(f_E \).

The solution to the problem is to also have a monotonically decreasing threshold rather than a constant one. The \(cv \)'s in Figure 1 are all \(< 0.1 \) but are obtained with an epsp size of 2 mV. If the limiting case \(cv \) is calculated for a threshold of 54.6 mV (the value that the mean voltage crosses the threshold for \(f_E = 25 \) in Figure 1) a value of \(0.1374 \) is obtained. The simulated value of the \(cv \) is 0.0466. The reason the simulation beats the limit is that the slope of the threshold at the crossing time is 4.47 mV/msec which gives a modified lower limit (dividing by the slope) of 0.0307.

6. Discussion

Incorporation of the synaptic reversal potentials into the original Stein model (1965) is more realistic in that it allows for nonlinear summation of epsp's and ipsp's. However, representing the recovery process by a time-varying threshold is somewhat artificial in that it is separated from the equation for the dynamics of the membrane.

Fig. 1. The mean and standard deviation of the interspike intervals from simulations of equation (1) are compared with the approximation method given by equations (8) and (10). See text for parameter values. In (A), the simulated mean intervals are plotted against the ones from the approximation method. In (B), there is a corresponding plot for the standard deviations. In (C), the coefficient of variation (\(cv \)) is plotted against the mean interval (\(MI \)). Simulation values are denoted by ⋄ and approximation method ones by *.
Moments of Voltage Trajectories

Uhlenbeck process. The method of Kostyukov (1978) appears somewhat general and promising. However, it requires an explicit expression for the transition p.d.f., which prohibits its use in most Poisson driven models. The characteristic function of the transition p.d.f. can be found for Stein’s original model (Saaty, 1967, p. 408), but does not appear to have a closed form for its inverse Fourier transform. More work is clearly needed on approximation methods for the moments of firing times.

Acknowledgement

We would like to thank our spouses, Ai Li Lee and Luther Smith, for helpful comments on this manuscript.

References

voltage. One way to combine the recovery process with the neuronal excitation is through a time-varying potassium conductance which gives rise to an afterhyperpolarization as in Kornell’s motoneuron model (1968). A stochastic version of this model was used to study the wide range of regularity of firing in the vestibular nerve under natural and electrical stimulation (Smith and Goldberg, in preparation).

Analytic results for the first passage time problem even in simple neural models are difficult to obtain. The approximation method of Stein is similar to treating the voltage process as being perfectly correlated around the time of crossing. Then approximation methods for functions of random variables can be used (Papoulis, 1965). Other approaches have been used for diffusion approximations to neural models. Wan and Tuckwell (1982) used perturbation methods for the Ornstein-