
Chapter 1

Introduction

If we want to analyze experimental or simulated data we might encounter
the following tasks:

� Characterization of the source of the signal and diagnosis

� Studying dependencies

� Prediction

� Modeling

These tasks are not independent. In fact, they are interrelated, but not
identical. Modeling is the most general, but also most challenging task: If
you have a good model for your data, you can use it to predict future data,
you can use the model parameters to characterize the data and in particular
you can use the parameters representing coupling constants between differ-
ent observables to characterize dependencies between these observables.
The main focus of this lecture is the analysis of time series, i.e. the analysis
of possibly vector valued measurements xxxi, that are characterized by an one
dimensional index, which is usually the time, but could be also a spatial
direction.
Classical examples from the statistics literature are the sun spot time series
or the Canadian lynx population data. Other areas with time series data are
geophysics, astrophysics, physiological time series such as ECG and EEG. In
economy there is a whole special area called econometrics dealing with time
series data. Moreover, also DNA and RNA sequences might be considered
as time series. The latter are series of observables with discrete states, we
will, however, in this lecture consider mainly continuous valued time series.
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The traditional models in mathematical statistics were and still are linear
models, i.e. models in which the next value xxxn+1 is a linear function of the
past values plus a stochastic noise term, the residuals. The most general
stationary model of this form can be written in the from of a autoregressive
(AR) moving average (MA) model, short ARMA-model.

Xn =

p∑
k=1

akXn−k + εn +

q∑
l=1

blεn−l . (1.1)

The residuals εn are uncorrelated in time, i.e. 〈εkεl〉 = δkl. If they were not,
than the model would be not the best linear model, because this dependency
should then be also included in the model. The residuals might be, however,
not independent. But modeling these dependencies would require nonlinear
functions. This would lead to nonlinear stochastic models.
But there is a second approach to time series analysis mainly developed by
physicists. It is based on the discovery the phenomenon of deterministic
chaos, i.e. the fact that low-dimensional deterministic systems can also pro-
duce aperiodic seemingly random behavior, and not only constant, periodic
or quasi-periodic motion as had been thought before. Thus the model class
of nonlinear deterministic systems was added as an alternative:

xn = f(xn−1, . . . , xn−p) (1.2)

In many cases the original hope that these phenomena can be described by
such low dimensional deterministic systems had to be abandoned. Examples
are the sleep EEG, the “climate attractor” or the stock market.
During this lecture we will look at some of these examples in more detail.
If we assume that the degree of non-linearity and the degree of stochasticity
could be quantified, the the linear stochastic and the nonlinear deterministic
models are at the two axes of the diagram. The actual scientific challenge
is to fill the large area in the middle — to develop methods for nonlinear
stochastic systems. After a short introduction we will start with linear
models and the related methods such as correlation functions and spectral
analysis. At the end of this part we will deal with the Kalman filter, which
is important also beyond the area of linear time series analysis.
After an intermezzo devoted to wavelet analysis we will proceed in the second
part of the lecture to nonlinear deterministic systems and the corresponding
methods, e.g. the estimate of fractal dimensions, dynamical entropies and
Ljapunov exponents. Finally we will consider some first approaches to deal
with nonlinear stochastic systems: Fitting Langevin equations or Fokker-
Planck equations, respectively, from data.
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1.1 Simple Characterizations

The starting point is a generally vector valued time series xxx1, . . . ,xxxn repre-
senting k observables. In the following we will at first restrict ourselves to
the case of a scalar time series, i.e. k=1. In order to proceed we have to
assume stationarity, i.e. that the data were generated by a process/system,
which remained constant during the time of observation. If cannot assume
that then we have either to shorten the observation time or to extend our
model in order to include also the slow temporal change of the system.
Mathematically we can distinguish between weak an strong stationarity.
Weak stationarity means that the mean and the variance of the process do
not change with time. Strong stationarity means that all probability distri-
butions characterizing the process are time independent. To describe this
in a more formal way we have to introduce the concept of a random variable:

1.1.1 Random variable

At first we need a Probability space (Ω,A, P ) containing of a

Set of possible events Ω: Set of outcomes of an random experiment —
in the case of a coin toss Ω = (heads, tails). Elements denoted by
ω ∈ Ω.

σ-algebra of subsets A: Set of subsets of Ω.

Probability measure P : Each set of events A ⊆ A has a probability 0 ≤
P (A) ≤ 1. P (Ω) = 1.

A random variable X is then a measurable function X : (Ω,A) → S to
a measurable space S (frequently taken to be the real numbers with the
standard measure). The probability measure PX−1 : S → R associated
to the random variable is defined by PX−1(s) = P (X−1(s)). A random
variable has either an associated probability distribution (discrete random
variable) or probability density function (continuous random variable).
This was the mathematical definition. For physicists one could simply say
that a random variable is an observable equipped with a probability for each
of its possible outcomes. In the following we will denote random variables
by capital letters and there values by lower case letters. A random variable
X is said to be discrete if the set {X(ω) : ω ∈ Ω} (i.e. the range of X) is
finite or countable.
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Alphabet: Set X of values of the random variable X.

Probability: p(x) = P (X = x), x ∈ X .

Normalization: ∑
x∈X

p(x) = 1

Expectation value of X:

EP [X] =
∑
x∈X

xp(x)

If the states of our observable are continuous we have a continuous random
variable and we can consider the cumulative distribution function:

Cumulative distribution

F (x) = P≤(x) = P (X ≤ x) =

∫ x

−∞
f(y)dy

A distribution has a density function if and only if its cumulative
distribution function F(x) is absolutely continuous. In this case: F
is almost everywhere differentiable, and its derivative can be used as
probability density:

f(x) =
dF

dx

Probability density f(x): The density itself is not a probability (it can
be > 1), it is related to a probability by

P (a ≤ x ≤ b) =

∫ b

a
f(x)dx .

Normalization ∫ xmax

xmin

f(x)dx = 1 .

Expectation value, mean:

E[X] = µ = µ1 =

∫ ∞
−∞

xf(x)dx

Moments:

E[Xm] = µm =

∫ ∞
−∞

xmf(x)dx
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Median x1/2

F (x1/2) =
1

2

Variance, standard deviation: Variance:

(E[X − E[X]])2 = E[X2]− (E[X])2 = σ2(X) =

∫ ∞
−∞

(x− µ)2f(x)dx

σ is called the standard deviation.

Covariance: For two random variables, the covariance is defined as

Cov(X,Y ) = E[(X − E[X]) · (Y − E[Y ])] = E[XY ]− E[X]E[Y ] .

The correlation coefficient is the normalized covariance

ρX,Y =
Cov(X,Y )√

Cov(X,X)Cov(Y, Y )

1.1.2 Stochastic process

If we have measured a time series and describe any single measurement by
a random variable Xt t ∈ T , then the family of all random variables X =
(Xt)t∈T is called a stochastic process. The distributions F (Xt1 , . . . , Xtm)
are called the finite dimensional marginal distributions of the process X. If
all finite dimensional marginal distributions are invariant with respect to a
shift in time, i.e.

F (Xt1 , . . . , Xtm) = F (Xt1+τ , . . . , Xtm+τ )

the process is called stationary. This condition, however, cannot be tested
in most cases. Therefore there is the weaker condition of weak stationarity,
which is also related to linear systems. To define it we need the notion
of the auto-covariance or autocorrelation function, respectively. The auto-
covariance function is the covariance between Xt at different times t1 and
t2: Cov[Xt1 , Xt2 ]. The autocorrelation function is the normalized auto-
covariance

ρ(t1, t2) =
Cov[Xt1 , Xt2 ]√

Cov[Xt1 , Xt1 ]Cov[Xt2 , Xt2 ]

i.e. the correlation coefficient between the values of X at different times.
If the mean of Xt does not depend on time and the auto-covariance does
only depend on the time lag between the two arguments the process is called
weakly stationary.
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1.1.3 Independent random variables

Given a time series {x1, x2, . . . , xN}, the simplest model for it is to as-
sume that the values of X at different points in time are independent, i.e.
p(xi, xj) = p(xi)p(xj) with the same distribution or density function p(·).
The only thing we can know and the only thing we have to know for an op-
timal prediction is this distribution or density function p(·). For continuous
random variables the most common density functions are

Gaussian distribution:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

which is called normal distribution for µ = 0 and σ = 1. This distri-
bution is ubiquitous, because the sum of random variables with finite
mean and variance is Gaussian distributed (central limit theorem).

Exponential distribution:

f(x) = λe−λx F (x) = 1− e−λx

It describes the inter-event interval distribution of a Poisson process,
i.e. events occurring randomly with the rate λ.

Log-normal distribution: How is a product X of positive random num-
bers asymptotically distributed? The logarithm of the product is the
sum of the logarithms and therefore the logarithm of X is normal
distributed, the product itself is log-normal distributed:

g(lnx) =
1√

2πσ2

(
−(lnx− µ)2

2σ2

)
(1.3)

f(x) = g(lnx)
d lnx

dx
=

1

x
√

2πσ2
exp

(
−(lnx− µ)2

2σ2

)
(1.4)

The log-normal distribution is not a power law, but it can look like a
power law in the log-log plot

ln p(x) = − lnx− (lnx− µ)2

2σ2
= −(lnx)2

2σ2
+
( µ
σ2
− 1
)

lnx− µ2

2σ2
(1.5)

All these distributions depend on parameters. Then a description of a sample
of data by such a distribution would be a parametric model and modeling
would then mean to estimate these parameters from the data.
Let us consider the case of the Gaussian distribution: If we know (or assume)
that the data were drawn from a Gaussian distribution, we have to estimate
two parameters, the mean and the variance of the data.
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1.1.4 Mean

The estimator of the mean is well known - the sample mean is estimated by

µ̂ =
1

N

N∑
n=1

xn . (1.6)

It is unbiased and consistent. What does it mean?
Let f̂n = f(x1, . . . , xn) be the estimate of the parameter λ for a given sample
{x1, . . . , xn}. f is called unbiased (erwartungstreu oder unverzerrt), if

E[f(x1, . . . , xn)] = λ (1.7)

for any n, i.e. if there is no systematic error.
A consistent estimator is an estimator that converges in probability to the
quantity being estimated as the sample size grows without bound. An esti-
mator f̂n (where n is the sample size) is a consistent estimator for parameter
λ if and only if, for all ε > 0, no matter how small, we have

lim
n→∞

P{|f̂n − λ| < ε} = 1

In our case this is equivalent to a asymptotically vanishing variance, i.e.

lim
n→∞

σ (f(x1, . . . , xn)) = 0 (1.8)

with σ2(f) := E((f − E(f))2). How can we see that the estimator of the
mean (1.6) is unbiased and consistent?
Unbiased:

E (µ̂) = E

(
1

n

n∑
n=1

xi

)

=
1

n

n∑
i=1

E (xi)

= µ

Consistent:

σ2(µ̂) = E (µ̂− E(µ̂))2

= E

(
1

n

n∑
n=1

(xi − µ)

)2

=
1

n
σ2(x) .
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If we consider the mean square error (MSE) of our estimator

MSE(f) = E[(f − λ)2] ,

it can be decomposed into the variance of the estimator and a contribution
of the bias

MSE(f) = E[(f − E[f ])2] + (E[f ]− λ)2 . (1.9)

1.1.5 Variance

The variance of a sample could be estimated by

σ̂′
2

=
1

n

n∑
i=1

(xi − µ̂)2 .

Now, what about the bias of this estimator?

E(σ̂′
2
) =

1

n
E

(
n∑
i=1

(xi − µ̂)2

)
=

=
n− 1

n
σ2(x)

Thus, this estimator is biased. An unbiased estimator of the variance is
therefore

s2
n = σ̂2 =

1

n− 1

n∑
i=1

(xi − µ̂)2 .

1.2 Hypothesis testing

If we have only the data, however, we can only calculate a value of the pa-
rameter, but we cannot calculate the bias and the variance of the estimator.
How reliable is our estimate? There are several possibilities to deal with this
situation: A possibility often encountered is the use of confidence intervals.
If we have an estimates x̂, lying in the confidence interval [x̂−∆x, x̂+ ∆x]
with a confidence level 0.95, this means that if we could repeat the exper-
iment infinitely often in 95% of the cases the true value would lie in the
interval. It does NOT say that the true value is in the interval with proba-
bility 0.95.
A second possibility is to estimate the likelihood of a certain observation,
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i.e. how likely was the observation of the given data under the assumption
that the observed parameter is the true one. This is not so informative
for a single estimation, but it is useful to compare different models for the
same data (testing two specific hypothesis against each other). Moreover,
it is used to derive estimators for model parameters, which are then called
maximum likelihood estimators. We will come back to that.
A directly related question is the problem of hypothesis testing. Usually we
estimate these parameters in order to test some hypothesis. One example
which we already encountered is stationarity. We could ask, whether the
mean and the variance of our data are constant in time, i.e. whether our
data are (weakly) stationary. Thus we can estimate the mean and the vari-
ances for different subsets of our data and we have then to decide whether
they agree with the assumption of stationarity or not. That is, we have to
test against the hypothesis of stationarity, which is called the null hypothe-
sis in this case. Another simple example is the following: Let us assume we
have two samples of data recorded under different conditions and we want
to know, if this condition influences our observable. Thus our hypothesis
would be that the two distributions are different. The simplest thing one
can ask then, is, whether the mean of the two samples is different or not.
This is done in the following way: First we need a so called test statistic
T , which is a function of the measured sample. First a null hypothesis is
formulated - this is the negative result we want to test against. In our case
this would be that the condition has no influence and the two means are
equal and therefore the expectation value of our test statistic is zero. Then
we characterize our estimate of the test statistic (the difference of the two
means) by the probability that this difference (or a larger one) would have
been produced simply by chance supposed the null hypothesis is true, i.e.
the mean values of the underlying distributions are equal. This probability
is given by

p = P (abs(T ) ≥ T̂ |µ1 = µ2) .

This probability is often called the “p-value”. The difference between out
two sample means is significant if its p-value is smaller than some threshold
- 0.05 or 0.01 are typical significance thresholds. This p-value measures the
probability of an error of first kind or false positive and the corresponding
threshold is often denoted by α in a test setting and called the size of the
test. There is, however, the second possibility that despite that the null
hypothesis is false, it is not rejected by the test. This is called an error
of second kind or false positive. The corresponding probability is usually
denoted by β. To specify β the alternative hypothesis have to be known,
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i.e. we have to make assumptions about what is truly the case instead of
the null hypothesis. 1 − β is then also called the power of the test against
this alternative hypothesis. If only the null hypothesis is specified this error
is not determined.
So, in general to perform a test we need a test statistic T and we need its
distribution under the assumption that the null hypothesis is valid. Among
all the sets of possible values, we must choose one that we think represents
the most extreme evidence against the hypothesis. That is called the critical
region of the test statistic. The probability of the test statistic falling in the
critical region when the null hypothesis is correct, is the α value (or size) of
the test. The test has to be designed in such a way that its power against
the possible alternatives is maximized.
Let us assume that we know that our test statistic is normally distributed.
It is then called a z-statistic and the corresponding test z-test.

z =
µ̂− µ0

σ/
√
n
.

If the possible alternatives are only distributions with positive means, we
can define the critical region as x ≥ xα with

F (xα) = 1− α ,

and asking whether z is larger than xα would be a one-sided test with
xα ≈ 1.6449. If we want to perform a two-sided test, we have to require
that −xα/2 < z < xα/2 with xα/2 ≈ 1.96 (use norminv in MATLAB).

1.2.1 The χ2 distribution

An important distribution for testing hypothesis of Gaussian distributed
random variables is the χ2 distribution. Let us assume we have n samples
drawn from the same Gaussian distribution with mean µ and variance σ2.
The sum of the squares of the samples is then distributed according to the
so called χ2 distribution:

χ2 = x2
1 + x2

2 + . . .+ x2
n

F (χ2) =
1

Γ(λ)2λ

∫ χ2

0
uλ−1e−

1
2
udu

with λ = 1
2n and n called the number of degrees of freedom.

The importance of this distribution comes from the fact that it describes the

distribution of the normalized estimator of the variance of a sample (n−1)s2n
σ2

is χ2 distributed with n− 1 degrees of freedom.
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1.2.2 t-Test

All tests with a test statistic distributed according to students t-distribution
are called t-tests. The test statistic in the simplest case for testing the sample
mean against a given value µ0 is the t-statistic

t =
µ̂− µ0

sn/
√
n

with df = n− 1 degrees of freedom and with the density function

F (t) =
Γ(1

2(df + 1))

Γ(1
2df)
√
df

∫ t

−∞

(
1 +

t2

df

)− 1
2

(df+1)

Most of the analytic results for parametric tests in statistics start with the
assumption of normal distributed measurements. If this is not the case
one can use non-parametric tests based on rank order statistics. Or one
uses Monte Carlo procedures were one generates samples from distribution
corresponding to the null hypothesis.
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Chapter 2

Linear models

2.1 Overview

Linear process: A process {Xn} is a linear process if it has the representation

Xn =
∞∑
j=0

bjεn−j

for all n, where εn ∝ N(0, σ2) (Gaussian distributed with zero mean and
variance σ2 and

∑∞
j=0 b

2
j <∞. Thus a time series of a linear process could

be generated by applying a linear filter to Gaussian noise.
Linear processes are modeled using the following model classes:

Moving average(MA-)model of order q:

Xn = εn +

q∑
l=1

blεn−l

By setting b0 = 1 this can be written as

Xn =

q∑
l=0

blεn−l .

Using the shift operator Bxn = xn−1 we can write

Xn = (1 +

q∑
l=1

blB
l)εn . (2.1)

13
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Autoregressive(AR-)model of order p:

Xn =

p∑
k=1

akXn−k + εn

or

(1−
p∑

k=1

akB
k)Xn = εn

ARMA-models of order (p, q):

xn =

p∑
k=1

akXn−k + εn +

p∑
l=1

qlεn−l

with

(1−
p∑

k=1

akB
k)Xn = (1 +

q∑
l=1

blB
l)εn (2.2)

State space models: They re equivalent to the the ARMA model class
and are written as

xxxn = AAAxxxn−1 +Kεεεn

yyyn = CCCxxxn + εεεn

in the so called innovation representation.

Basic properties of linear models:

� If the inputs ε are Gaussian iid noise then the x values are Gaussian
distributed too.

� Any stationary process can be represented by a linear model with
infinite model order and uncorrelated residuals εn, which, however,
are only independent, if the process is real a linear one.

2.1.1 The autocorrelation function

We introduced already the autocorrelation

ρ(t1, t2) =
Cov[Xt1 , Xt2 ]√

Cov[Xt1 , Xt1 ]Cov[Xt2 , Xt2 ]
.



2.1. OVERVIEW 15

Under the assumption of stationarity this is equal to

ρ(τ) =
Cov[Xt, Xt+τ ]

Cov[Xt, Xt]
=
C(τ)

σ2
.

with C(τ) denoting the autocovariance function.
Because the covariance is symmetric we have C(τ) = C(−τ) and C(0) = 1.
The autocorrelation function is the normalized autocovariance function

ρ(τ) =
C(τ)

C(0)
.

The estimator of the autocorrelation function estimated from a time series
is called the sample autocorrelation function ρ̂(τ). In practice there are used
more than one estimator for the autocovariance function:

Unbiased estimate:

Ĉ(τ) =
1

N − τ

N−τ∑
k=1

(xk − µ̂)(xk+τ − µ̂)

The problem is that for large τ only a very few samples enter.

Biased estimate:

Ĉ(τ) =
1

N

N−τ∑
k=1

(xk −−µ̂)(xk+τ − µ̂)

How can we test that some data are uncorrelated, as e.g. the residuals {εn}
of our linear models should be? There are a lot of proposals in the literature,
however they assume that the data are not only uncorrelated but iid. i.e.
independent.
The most simple one is to use the fact that for large N the sample auto-
correlations of an iid sequence with finite variance are approximately iid,
normal distributed with a variance 1/N (τ � N), thus 95% of the sample
autocorrelations should fall into the interval ±1.96/

√
N . If there more than

5% of the values fall outside this bound, we should think about rejecting the
hypothesis.
Another possibility is the Portmanteau test with the test statistic

Q = N
m∑
j=1

ρ̂2(j)

which is distributed according to a χ2-distribution with m degrees of free-
dom.



16 CHAPTER 2. LINEAR MODELS

2.1.2 Autocorrelation function of MA-models

In the case of the MA-models the autocorrelation gives us the order of the
model, because

C(τ) = Cov[Xn, Xn+τ ]

=

{
0 if τ > q

σ2
∑q−τ

k=0 bkbk+τ if τ ≤ q

Thus for any process with a non-vanishing correlation function for larger τ
the moving average model might be a bad choice for the model class.

2.2 Autoregressive models

2.2.1 AR(1)-model

Let us first look at an example. The simplest autoregressive model is the
AR(1)-model

xn = axn−1 + εn (2.3)

containing only one parameter a. The deterministic part describes an ex-
ponentially damped motion with the fixed point x = 0. The invariant dis-
tribution results from this damping toward the origin and the simultaneous
excitation by the noise. If the noise ε is Gau”ssian also the state variable x
is Gaussian distributed and can be characterized by its mean and variance.
Because εi has zero mean, also µ = E(x) = 0. The variance can be esti-
mated easily from (2.3) by squaring both sides and building the expectation
taking into account that εn and xn−1 are uncorrelated:

E(x2) = a2E(x2) + E(ε2)

leads to

σ2(x) =
σ2
ε

1− a2
.

In particular, we see that the variance will diverge if a is approaching 1, i.e.
if the deterministic dynamics becomes unstable.
In the last chapter we considered iid samples, i.e. to subsequently measured
samples should be statistically independent. Now we have temporal correla-
tions. Multiplying both sides of (2.3) with xn−1 and taking the expectation
value we get

E(xnxn−1) = aE(x2
n−1)
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or

a =
E(xnxn−1)

E(x2
n)

i.e. the model parameter a is given by the value of the normalized autocor-
relation function for one time step delay. Thus it seems obvious to estimate
the model parameter using estimates of the autocorrelation function. This
can be generalized for autoregressive models of arbitrary order and is known
as the Yule-Walker algorithm.
How would the AR(1)-process looks like if we would represent it by a MA-
model? By recursively inserting (2.3) we get

xn = a2xn−2 + εn + aεn−1

= a3xn−3 + εn + aεn−1 + a2εn−3

= . . .

=

∞∑
k=0

akεn−k

i.e. bk = ak.

2.2.2 Stability of AR-models

Let us now consider the general AR-model

Xn =

p∑
k=1

akXn−k + ε .

In order to study its stability we rewrite it in matrix form

XXXn = AAAXXXn−1 + εεε

with XXXn−1 = (Xn−1, . . . , Xn−p)
T , εεεn = (εn, 0, . . . , 0)T

A =


a1 a2 . . . ap−1 ap
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0


The model is stable, if the absolute vale of the eigenvalues of AAA is smaller
than 1. The eigenvalues are given by the zeros of the characteristic polyno-
mial

zp − zp−1a1 − . . .− zap−1 − ap = 0 .
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Complex zeros correspond to damped oscillatory behavior, real zeros to pure
relaxatory behavior as in the AR(1)-model. If the zero are

zk = rke
−iφk fk =

φk
2π
· fs γ = −fs ln r

the model is stable if rk < 1 for all k.

2.2.3 Estimating the AR-parameters

Least square estimation

(ar-model in TISEAN, lpc in MATLAB)
The most common way to test the quality of a model is to use it as a
predictor and to calculate the prediction error by the mean square error, i.e.

MSE =
1

N − p

N∑
n=p+1

(xn − x̂n)2 (2.4)

with estimating x̂n by the linear predictor

x̂n =

p∑
k=p+1

akxn−k . (2.5)

Thus an obvious way to estimate the parameter ak from data would be to
minimize the prediction error

0
!

=
∂1/N

∑N
k=1(xn − x̂n)2

∂ak

0 =
1

N − p

N∑
n=p+1

(xn −
p∑

k′=1

a′kxn−k′)xn−k

leading to a system of linear equations:

1

N − p

N∑
n=p+1

xnxn−k =

p∑
k′=1

a′k
1

N − p

N∑
n=p+1

xn−k′xn−k (2.6)

which can be solved using standard techniques. The resulting estimator
for the ak is also known as least squares estimator. Recognizing that he
equations contains some kind of sample autocorrelation function it can be
written as

Ĉ ′(k) =

p∑
k′=1

a′kĈ
′(k − k′) (2.7)

with asymptotically for large N Ĉ ′(k − k′) = Ĉ(k − k′).
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Yule-Walker algorithm

(aryule in MATLAB)
Another possibility to derive an estimator starts directly from the model

xn =

p∑
k=1

akxn−k + εn .

Multiplying both sides with xn−k′ and calculating the expectation value
leads to

E(xnxn−k′) =

p∑
k=1

akxn−kxn−k′ .

by taking into account that E(xkεm) = 0 for k < m. Moreover, because
E(xn) = 0, we get

C(k′) =

p∑
k=1

akC(k − k′) . (2.8)

These equations for the autocorrelation function are called Yule-Walker
equations. If we replace the autocorrelation function by its sample esti-
mate and solve the equations for the ak we get the Yule-Walker estimate for
the parameters. This estimates is as good as our sample estimate is for the
autocorrelation function.
Comparing (Yule-Walker-Eq) with (LS-Eq-2) we recognize that they differ
only in estimating the correlation function of the right hand side and that
the coincide asymptotically for N →∞.
Not that (2.8) implies that the autocorrelation function contains all infor-
mation about the model parameters. Or in other words: A linear process
is fully specified by its autocovariance function. We will use this property
later for constructing tests for non-linearity of time series.

Burg algorithm

(arburg in MATLAB)
A third algorithm for parameter estimation is the Burg algorithm. Here not
only the the forward prediction error is minimized, but also the backward
prediction error. This is based on the fact that linear processes are invariant
with respect to time reversal. The probabilities p(xn|xn−1, . . . , xn−k) =
p(xn−k|xn−k+1, . . . , x1). The main advantage of this algorithm is that it
always provides stable models.
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Maximum Likelihood Estimation

While minimizing the the mean square error is a reasonable pragmatic strat-
egy there is a more systematic approach to the problem of an optimal pa-
rameter estimate. For instance, we can as, how likely it is, that given certain
values of the parameters, the data were produced by the given model, i.e.
p(data—parameter). We can ask for the values of the parameter, for which
the observed data were most likely. An estimator, which maximizes this
likelihood is called maximum likelihood estimator. How does it looks like
for the autoregressive model? We start with the assumption of indepen-
dent Gaussian distributed residuals εn. The probability of the sequence of
residuals is given by

L =
N∏

i=p+1

p(εi)

L =

N∏
i=p+1

1√
2πσ2

exp

(
− 1

2σ2
(xi −

p∑
k=1

akxi−k)
2

)

−2 logL = (N − p) log(2πσ2) +
1

σ2

N∑
i=p+1

(xi −
p∑

k=1

akxi−k)
2 .

Thus, maximizing the likelihood or the log-likelihood corresponds to mini-
mizing the mean square errors, i.e. to least squares estimation in this case.
But even the maximum likelihood approach could be criticized because it
assumes that we observed a typical data set and so one has for instance
problems with outliers. Because by calling a data point an outlier we say
it is very unlikely that our system under study produces such a data point.
How can we incorporate this kind of knowledge in our analysis? This is done
in Bayesian statistics. Here we do not maximize the likelihood of the data,
but we ask, how likely is a given parameter given the data. Because we only
know the likelihood p(data|parameter) we use Bayes’ rule to estimate the
probability of the parameter values given the data:

p(parameter|data) =
p(data|parameter)p(parameter)∑

parameter p(data|parameter)p(parameter)

We can then use either the most probable parameter value or the condi-
tioned expectation as an estimate. The main difference to the maximum
likelihood estimate is the so called “prior” p(parameter), which contains our
assumptions about reasonable models. In particular, the posterior proba-
bility p(parameter|data) cannot be non-zero for parameter values with zero
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prior probability. The maximum posterior estimate is equal to the maximum
likelihood estimate if we assume a constant prior.

2.2.4 Estimating the parameters of ARMA-models

While the parameter estimation in the case of the AR-models led to the
problem of solving a system of linear equations, this is not the case anymore
for ARMA and state space models. Therefore nonlinear, usually iterative
procedures or approximations are necessary.

The Hannan-Rissanen algorithm

Here the parameter estimation is divided into two steps:

1. A high-order AR(m)-model is fitted to the data, with m > max(p, q).
This model is used to estimate the noise terms

εn = Xn −
m∑
k=1

âkXn−k .

2. In a second step the parameters of the ARMA(p,q)-model are esti-
mated by a least squares linear regression ofXn onto (Xn−1, . . . , Xn−p, εn−1, . . . , εn−q)

2.2.5 Order selection

Before estimating the parameters of the model we have to specify the order
p. Increasing the order p usually leads to smaller prediction errors. Does it
mean that is also produces the better model? No, this is not the case.
From a statistical point of view and starting from the assumption of an
underlying “true model” one has to note that at least the variance (and
perhaps also the bias) of the estimator increases if I increase the model
order for a fixed number of data and thus the probability that the true
values are near the estimated ones decreases. We can, however, also adopt
another point of view without referring to the “true model”: Modeling a
time series usually intends to build a model of the system, which generated
the time series. Thus, we do not only want to describe the given time series,
but the model should be a good model for any time series produced by this
system, i.e. the model should generalize. In order to do so succesfully we
have to distinguish between the regularities in the time series and the noise.
Increasing the the model order increase the possibility that we do not fit the
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regularities produced by the system, but only the noise. This is also called
“overfitting”. To avoid this we have different possibilities, depending on our
prior knowledge about the system.

In sample and Out-of-sample error: If there are enough data available
the data set can be splitted into a training data set and a test data
set. The parameters are estimated on the training set leading to the
in-sample prediction error. The the estimated model is used to predict
the test data giving the out-of-sample prediction error.

Final prediction error: The FPE criterion was developed by Akaike Akaike
(1969) by implementing the above idea for autoregressive processes,
which led to an out-of-sample prediction error estimate

FPEp = σ̂2n+ p

n− p
with σ2 being the mean square in-sample prediction error.

More general criteria based on estimations of the likelihood of the test data
given the model estimated using the training data. There are the AIC
(Akaike information criterion), its bias corrected version AICC or the BIC
(Bayes information criterion). All these criteria have to be applied with
caution, but they are often provided by software packages and can be used
to give at least an orientation.

2.3 Spectral analysis

Performing spectral analysis represents the data as sum (or integral) of
components at a single frequency. If we consider a time continuous signal
x(t) of infinite length we can define the Fourier transform

x(f) =

∫ ∞
−∞

dtx(t)e−i2πft x(t) =
1

2π

∫ ∞
−∞

dfx(f)ei2πft

The spectral power or power spectrum is the given by the absolute value of
the fourier component at frequency f, i.e.

S(f) = |x(f)|2

The Fourier transform of the convolution of two functions in time is the
product of their Fourier transforms:

z(t) =

∫ +∞

∞
dτy(t− τ)x(τ) ⇒ z(f) = y(f)x(f) .
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The inverse relationship is called modulation:

v(t) = x(t)y(t) ⇒ v(f) =
1

2π

∫ +∞

∞
df ′y(f − f ′)x(f)

The power spectrum is directly related to the autocorrelation function by
the Wiener-Khinchin theorem:

C(t) =

∫ ∞
−∞

dτx(t+ τ)x(τ) ⇒ C(f) = S(f) = |x(f)|2 .

The discrete Fourier transform of the time series sampled at discrete times
can be written as

x̂(fk) =
N−1∑
n=0

xne
−i2πfk/fsn (2.9)

which is the discrete Fourier transform for fk = fsk/N and k = 0, . . . , N−1.
The inverse transform is then

xn =
1

N

N−1∑
n=0

x(fk)e
2πikn/N .

If one considers a given time series as a sample from a process which is con-
tinuous in time we can ask, under which conditions the time series represents
the original process. This question is answered by the Nyquist-Shannon sam-
pling theorem, saying that the sampling frequency fs has to be twice as large
as the highest frequency contribution. Half of the sampling frequency is also
called Nyquist frequency fNyquist. This theorem is related to the problem
of aliasing. Aliasing means that a high frequency component (f > fNyquist)
of the original signal appears in the sampled signal as a low frequency com-
ponent. A common example of temporal aliasing in film is the appearance
of vehicle wheels traveling backwards, the so-called Wagon-wheel effect.
The second problem is that we have only a finite time series available (win-
dowing). Both problems can be analyzed using the modulation property of
the Fourier transform. Let us consider the following periodic function

s(t) =
∞∑

n=−∞
δ(t− n∆) ∆ = 1/fs

which can be represented in a FOUREIER series with the coefficients

cn =
1

∆

∫
∆
dts(t)e−2πfsint =

1

∆
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s(t) =
∞∑
−∞

fse
2πinfst

Applying the Fourier tranform we get

s(ω) = ωs

∞∑
n=−∞

δ(ω − nωs) ωs = 2πfs

If we represent sampling the continuous function x(t) at discrete times by
multiplying with (2.3) we see that the resulting Fourier transform is a con-
volution of the original transform with the transform of (2.3). This results
in a new transform

x̃(ω) = fs

∞∑
n=−∞

x(ω + nωs) .

The effect of finite time can be analyzed similarly by multiplying the signal
with a window function. The rectangular window

wR(t) =

(
1 if − ∆

2 ≤ t < (N − 1
2)∆

0 otherwise

)
has the Fourier transform

wR(ω) = N∆
sinωN∆/2

ωN∆/2
exp−iω(1/2−N)∆

with its main contribution at ω = 0 but with a lot of side maxima which
distort the original spectrum. Therefore one uses other windows, which
taper smoothly to zero at both ends, such as the Bartlett, Welch, Hann or
Hamming windows.

2.3.1 The periodogram

The periodogram of a time series {x1, . . . , xN} is the function

Sn(fk) =
1

N

∣∣∣∣∣∣
(∑

n=0

N − 1)xne
−2πifkn

∣∣∣∣∣∣ .
Note that there is no consensus regarding the normalization. Thus one has
to be check the normalization if one uses routines from program packages.
In order to estimate the power spectrum of the underlying stochastic process
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there is the problem that the periodogram is not a consistent estimator. In
fact, the values of the estiamte are approximately distributed as exponential
random numbers, i.e. their variance is equal to the mean. Increasing the
number of data points increases the number of frequency values for which
we estimate a value but the single estimates do not become better. There
are two possibilities to overcome this problem:

1. Average over different frequency bins, which leads to spectral average
estimators. This is for instance implemented in the TISEAN routine
spectrum.

2. Welch’ method: Split the data set into possibly overlapping segments
and average the estimated periodograms. This is e.g. implemented in
MATLAB’s estimators of the power spectrum (pwelch, spectrum.welch).

2.3.2 Estimating the spectrum using ARMA models

A principal alternative to the periodogram is the estimation of the spectral
density of a stochastic process fitting a linear model to the data and using
the known spectral densitiy of this model as an estimate. Let us consider
the time shift operator BXn = Xn−1. It corresponds in Fourier space a
Multiplikation with z = e−2πifk . For an ARMA(p,q)-model written as

(1−
p∑

k=1

akB
k)xn = (1 +

q∑
l=1

blB
l)εn

we get the spectral density

x(fk) =
σ2(1 +

∑q
l=1 blz

l)

1−
∑p

k=1 akz
k

.

The autoregressive part appears in the denominator, thus small values of it
lead to high power at these frequencies. We discussed already the interpreta-
tion of the autoregressive part as a set of harmonic oscillators or linear relax-
ators, respectively. The frequencies of this oscillators correspond to the in-
verse zeros of the polynomial (1−

∑p
k=1 akz

k) = zp((1/z)p−
∑p

k=1 ak(1/z)
k.

For the spectral density the polynomial is evaluated on the unit circle only,
thus we see the nearer the poles are to the unit circle the higher and sharper
is the maximum in the power spectrum. Let us consider the example of the
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AR(2)-model.

Xn = a1Xn−1 + a2Xn−2 + εn

z2 − a1z − a2 = (z − zp)(z − z∗p)

zp = reiφ φ = ω∆ ∆ = 1/fs

a1 = 2r cosφ a2 = −r2

S(ω) =
σ2
ε

2π

1

(1− r2)2 + 4r2(cos2 φ+ cos2 ω∆)− 4r(1 + r2) cosφ cosω∆

with the maximum at

cos(ωmax∆) =
1 + r2

2r
cos(φ)

i.e. for r < 1 the maximum is not exactly at the position of the oscillator
frequency.



Chapter 3

Nonlinear time series
analysis

3.1 Deterministic dynamical systems

While statisticians, when trying to explain the real world, are starting from
a “random world” by introducing correlations or dependencies, respectively,
physicians often think about the world as a deterministic one1 and stochas-
ticity (noise) is introduced as an approximation of effects which are either
too high—dimensional or fluctuate too fastly to take them explicitly into
account. So our starting point is a deterministic dynamic system living in
a state space X which should be at the moment finite dimensional. The
dynamics is either defined for discrete times

xxxn+1 = F (xxxn) (3.1)

thus defining a map or for continuous times

ẋxx(t) = f(xxx) . (3.2)

by a system of coupled ordinary differential equations which defines a flow
xxx(t+t0) = φt(xxx(t0)). There are several possibilites to relate the two descrip-
tions to each other. Very often one considers the stroboscopic map of (3.2)
for a given time T with xxxn = φT (xxxn−1), e.g. in the case of periodically driven
systems, or the Poincare surface of section (Poincare map) - the section of
the flow with a hyperplane transversal to the flow. Formally it is defined

1With the exception of quantum mechanics, but even there the evolution of the wave
function is deterministic

27



28 CHAPTER 3. NONLINEAR TIME SERIES ANALYSIS

in the neighbourhood of a periodic orbit, but often it can be extented to
the whole phase space. A simple way to generate the hyperplane, is to set
one coordinate of the dynamical system to a fixed value (TISEAN program:
poincare). In the following we only consider maps F , be it generically maps,
maps generated by sampling flow data with a fixed sampling interval or
Poincare maps.

3.1.1 Characterization — Dynamical invariants

One of the objectives of time series analysis is the characterisation of the
system which generated the time series in question. In the case of deter-
ministic dynamic systems there are quantities available which are better
suited for this task than simply taking the model parameters. Determinis-
tic dynamical systems can be charaterised by quantities which are invariant
with respect to coordinate transformations and therefore independent of the
“channel” by which we observe the system. We will came back to that in
3.1.2.

Attractor dimension

The first invariant is the attractor dimension. There are several definitions
of attractors of dynamical systems around. Intuitively an attractor is the set
of points in the phase space which are visited by the system asymptotically
if the transient is discarded. A little bit more mathematically one could say
that an attractor is an invariant set, which is attracting - in contrast to a
repellor or a saddle point. To be attracting the set A must be a subset of
an open set U , its neighbourhood, with

lim
n→∞

inf
y∈A
||Fn(x)− y|| → 0 ∀x ∈ U .

Sometimes it is only required that A attracts a set of positive measure, which
leads to the different concept of Milnor attractors.
With respect to the dimension we can distinguish between dimensions of a
set or dimensions of a measure. The first simply considers all points of a
set, the latter also takes into account how often this points are visited by
the system.
Let us first consider the box-counting dimension, which is an example of the
first, but can be considered also in the more general framework of the latter.
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Box-counting dimension of a set A: There are several equivalent
definitions of this dimension. One possibility is to partition the phase space
of our system by hypercubes with a side length ε. Then we call Nε(A) the
number of cells, which are intersected by the attractor A. The box-counting
dimension D0 is then defined as

D0 = lim
ε→0
− logNε(A)

log ε
.

This is a property of the set only. It is invariant with respect to smooth
invertible transformations of the phace space.
Examples: Fixed point attractors have dimension zero, limit circles 1, quasiperi-
odic motion on a torus 2. Middle thirs cantor set: Repellor of

xn+1 =
3x if x ≤= 1/2

3− 3x if x > 1/2; .

is a Cantor set. With ε = 3−n and Nε = 2n we get D0 = log 2/ log 3 = log32.
Before considering dimensions that take the measure into account, let us
first discuss the entropy.

KS-entropy

While the dimension gives us information about the number of active de-
grees of freedom of the dynamical system, there is a second, complementary
quantitiy, the metric or Kolmogrov-Sinai entropy which tells us about the
randomness or irregularity of the dynamics. Basically it measures the un-
certainty of the next observation given all the observations from the past.
To describe this we use the notion of an invariant measure. Remeber the
probability space (Ω,B, P ) containing of a set of possible events Ω, a σ-
algebra of subsets B (Set of subsets of Ω) and the probability measure P .
Each set of events A ⊆ B has a probability 0 ≤ P (A) ≤ 1, P (Ω) = 1. Now
our set of events is the phase space X of our dynamical system. We say
a measure µ is invariant under a transformation F : X → X, or F is a
measure preserving transformation wrt to µ if

µ(F−1A) = µ(A) ∀ A ∈ B . (3.3)

Let us consider some probability space (X,B, µ) and a finite or countable
index set I. A collection of measurable subsets, ξ = {Cα ∈ B|α ∈ I} is
called a measurable partition of X if

1. µ(X \ ∪α∈ICα) = 0, i.e. the partition “contains” the whole measure.
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2. µ(Cα1 ∩ Cα2) = 0 if α1 6= α2, i.e. the cells Cα of the partition are
disjoint.

The entropy of µ with resepect to the partition ξ is then

H(ξ) := Hµ(ξ) = −
∑
α∈I

µ(Cα) logµ(Cα) ≥ 0 . (3.4)

Example: Logistic map
xn+1 = 1− 2x2 (3.5)

with the partition C1 = [−1, 0),C2 = [0, 1]. µ(C1) = µ(C2) = 1/2. Therefore
H(ξ) = log 2.
Now let us consider two partitions ξ = {Cα|α ∈ I} and η = {Dβ|β ∈ J}.
Then the joint partition ξ ∨ η is defined as

ξ ∨ η := {C ∩D|C ∈ ξ,D ∈ η, µ(C ∩D) > 0}

It is also possible to define the conditional entropy of ξ given η using the
notation µ(A|B) = µ(A ∩B)/µ(B) as

H(ξ|η) := −
∑
β∈J

µ(Dβ)
∑
α∈I

µ(Cα|Dβ) logµ(Cα|Dβ) (3.6)

which can be written alternatively

H(ξ|η) = H(ξ ∨ η)−H(η) .

Now we are able to define the entropy of the transformation F with respect to
the partition ξ. First we introduce the joint partition of ξ and its preimages
under F

ξF−n := ξ ∨ F−1(ξ) ∨ . . . ∨ F−n+1(ξ) .

Example: ξF−2 for the logistic map (3.5) consists of the intervals between

the points−1,−
√

(1/2), 0,
√

(1/2), 1, withH(ξF−2) = log 4 andH(ξF−2|ξF−1) =
log 2.

A this point we can also employ a complementary way to introduce
these entropies, namely as entropies of a symbol sequence. Think of using
the partition ξ to encode the phase space of the dynamical system. The
trajectory {x1, . . . , xn} is encoded by a symbol sequence {α1, . . . , αn}, if
x1 ∈ Cα1 ,x2 ∈ Cα2 and so on. If we denote the probability to observe a
certain symbol by p(α) = µ(Cα) we get for the entropy

H(ξ) = H(α) = −
∑
α∈I

p(α) log p(α) .



3.1. DETERMINISTIC DYNAMICAL SYSTEMS 31

with α denoting the random variable which can have the value α with prob-
ability p(α). What corresponds then to ξF−n? Being in a cell of this partition
means that the trajectory was at time n in Cαn , at n − 1 in Cαn−1 and so
on. Thus the measure of one cell of this partition corresponds to the joint
probability p(αn, αn−1, . . . , α1), i.e. the probability of a certain subsequence
of the string. Consequently the conditional entropy

H(ξF−2|ξF−1) = H(α2|α1) = −
∑

α1,α2∈I
p(α2, α1) log p(α2|α1)

is denoting the uncertainty of observing the symbol α2 after α1 was seen.
The metric entropy of the transformation F relative to the partition ξ
(sometimes also called the entropy rate of the process generated by F ) is
defined as

h(F, ξ) := hµ(F, ξ) := lim
n→∞

1

n
H(ξF−n) (3.7)

which is equivalent to

h(F, ξ) = lim
n→∞

H(ξ|F−1(ξF−n) . (3.8)

H(ξ|F−1(ξF−n) is monotonically decreasing. This can be shown using the
representation via the symbol sequences:

H(ξ|F−1(ξF−n) = H(α0|α−1, . . . , α−n+1) := hn

Then

hn − hn+1 = H(α0|α−1, . . . , α−n+1)−H(α0|α−1, . . . , α−n)

= MI(α0 : αn|α−1, . . . , α−n+1) ≥ 0

is a conditional mutual information.

The KS-entropy of F with respect to µ is then defined as the supremum
over all partitions:

hKS(F ) := hµ(F ) := sup
ξ,h(ξ)<∞

hµ(F, ξ) . (3.9)

A generating partition ξg is a partition for which the metric entropy is
maximal, i.e.

h(F, ξg) = hKS(F ) .

There is however, in general no algorithm to find generating partitions for
arbitrary dynamical systems. For 1-dimensional maps it is known how to
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find them and for 2-d also an algorithm exists, which allowed to determine
the generating partitions for well known systems, such as the henon map
Grassberger and Kantz (1985) or the standard map Christiansen and Politi
(1995).
But if we cannot find a generating partition, is it possible to estimate the
KS-entropy? Yes, because in most cases (nonatomic Borel measure on a
compact metric space) a finer and finer refinement of the partition allows to
get better and better estimates. Or more formally: If I consider a sequence
of partitions ξi with diam(ξi) → 0 (diam(ξi) := supC∈ξ diam(C)), then
h(F, ξi)→ hKS(F ). An important property of the KS-entropy is that

hKS(F k) = khKS(F ); . (3.10)

This should be taken into account, when estimating entropies from flow data
using a delay embedding.

Lyapunov exponents

The central property of chaotic dynamics is its sensitive dependence on
the initial conditions, i.e. the exponential divergence of initially neigh-
bouring trajectories. In order to keep the dynamics bounded, however,
this “stretching” of the attractor has to be complemented by a folding
mechanism, which brings points together which were far away from each
other. If we look only locally at the dynamics wo only see the stretch-
ing. So, if we denote the distance between two trajectories at time n by
∆n = ||xxxn − xxx′n|| = ||Fn(xxx0)− Fn(vx′0)|| then we expect

∆n ∝ eλn

with the Lyapunov exponent

λ = lim
n→∞

lim
∆0→0

1

n
log ∆n . (3.11)

As we will see in a moment, one can define a whole spectrum of exponents
and (3.11) ist the largest one. This Lyapunov exponents allow already a
classification of deterministic dynamical systems:

� stable fixed point: λ < 0

� stable limit cycle: λ = 0

� chaotic behaviour: λ > 0
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Note that, however, for a diffusion process (random walk) ∆n ∝
√

(n), i.e.

λ ∝ log(n)
n → 0 for n→∞.

Now let us analyze the dynamics of the difference between two trajectories
xxxn and yyyn = xxxn + ∆∆∆n in more detail. Because we consider in the end
infinitesimal differences, their dynamics is governed by the linearization of
the map FFF (3.1),i.e. its Jacobian

JJJ(xxxn) =

(
∂FFF

∂xxx

)
xxx=xxxn

Jij(xxxn) =

(
∂Fi
∂xj

)
xxx=xxxn

.

This leads to a linear dynamical system with time dependent coefficients for
the perturbations ∆∆∆

∆∆∆n+1 = JJJ(xxxn)∆∆∆n .

The long term dynamics is the governed by the eigenvalues Λi of the product
of th Jacobians (

N∏
n=1

JJJ(xxxn)

)
uuu

(N)
i = Λ

(N)
i uuu

(N)
i . (3.12)

with uuu
(N)
i denoting the eigenvectors of the product of the N Jacobians.

The Lyapunov exponent λi is then defined as the normalized logarithm of
the modulus of the ith eigenvalue Λi of the product of all Jacobians along
the trajectory (in time order) in the limit of an infinitely long trajectory:

λi = lim
N→∞

1

N
log |Λ(N)

i | (3.13)

Usually the eigenvalues are ordered according their magnitude, starting with
the largest. The fact that the limit (3.13) exists and is unique was schown
by Osedelec (1968) and is known as multiplicative ergodic theorem. This
is a highly non-trivial result because the multiplication of matrices is non-
commutative and the logarithm cannot be exchanged with the formation of
the eigenvalues. In the case of one-dimensional maps, however, the definition
reduces to

λ = lim
N→∞

1

N

N∑
n=1

log |F ′(xn)|

and the existence and uniqueness is established by the usual (Birkhoff) er-
godic theorem.
Some properties:
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� The Lyapunov exponents are invariant under smooth transformations
of the phase space.

F̃FF (x̃xx) = ggg ◦FFF ◦ ggg−1(x̃xx)

Then
N∏
n=1

J̃JJn(xxxn) = J̃JJ
(ggg)
N

∏
JJJnJ̃JJ

(ggg−1)
1

yields in the limit N → ∞ the same eigenvalues and thus the same
Lyapunov spectrum as the original dynamics. This ensures that the
Lyapunov exponents are indeed invariants of a dynamical system.

� If µ is invariant under FFF then it is also under FFF−1. The absolute values
of the Lyapunov exponents of FFF−1 remain the same but the sign of
the exponents becomes reversed.

� Flow data have always at least one λj = 0.

� The Lyapunov spectra of Hamiltonian systems are symmetric wrt to
zero, because the dynamics remains invariant wrt to time reversal.

Relation between the invariants

In many cases the Lyapunov spetrum contains all informations about the
invariants of a dynamical system: The entropy is equal to the sum of the
positiv Lyapunov exponents, the so called PESIN identity

hKS =
∑
λk>0

λk . (3.14)

The KAPLAN-YORKE formula makes the connection between the Lya-
punov exponents and the fractal dimension of the attractor. If there is only
one fractal diraction, one has

DKY = n+

∑n
i=1 λi
|λn+1|

,

n∑
i=1

λi ≥ 0 >

n+1∑
i=1

λi

DKY is called the KAPLAN-YORKE or also the LYAPUNOV dimension.
A more general theorem was proven by Ledrappier and Young (1985):∑

i

Diλi = 0.

with Di being partial dimensions, i.e. dimensions in a certain direction, with
values between 0 and 1.
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Some Examples

� Linear Systems: What about the deterministic parts of the linear sys-
tems considered by the statisticians? If they are stable, they have fixed
point attractors, i.e. D = 0, only negative Lyapunov exponents and
thus zero entropy.

� One dimensional maps: They have only one Lyapunov exponent. If
λ > 0, hKS = λ, DKS = 1.

� Two dimensional maps: If λ1 > 0 > λ2:

DKS =

{
2 if |λ1| > |λ2|

1 + λ1
|λ2| else

3.1.2 Phase space recontruction — embedding theorems

Very often one can only observe one or a few variables of a higher dimensional
dynamics. The question then is: Can we reconstruct the phase space of
the underlying dynamical systems in order to estimate dimension, entropy
and the Lyapunov exponents? The answer is yes and is founded on the
embedding theorems by Whitney (1936), Takens (1980) and its extension
by Sauer et al. (1991). The basic idea is the following: If we oberve a
dynamical system

xxxn+1 = F (xxxn)

via an observation function y = h(xxx), the dynamical system (3.1) gives rise
to a dynamic of y. Takens proposed to reconstruct the original phase space
using the so called delay coordinates yyyn = (yn, yn−1, . . . , yn−m+1. The ques-
tion is now under which conditions there exists a deterministic dynamical
system G for the dynamics of yyy and how it is related to F? Obviously, FFF
induces a dynamics for yyy because

yn−k = h(xxxn+k) = h(F k(xxxn)) .

thus we have But is this map also invertible, i.e. will we have a one to one
relationship between xxx and yyy? The answer is that under generic conditions
m has to be large enough to ensure this one to one relationship. Whitney
proved that every D-dimensional smooth manifold can be embedded in the
R2D+1, and that the set of maps forming an embedding is a dense and open
set in the space of C1 (continously differentiable) maps. Thus for an ar-
bitrary map ∈ C1 there exists an embedding in its neighborhood. Takens



36 CHAPTER 3. NONLINEAR TIME SERIES ANALYSIS

applied this to attractor reconstruction using delay coordinates. Sauer et al.
improved the result of Takens and extented it to more general situations.
Their central result is, that the recontructed state space has to be at least of
dimension m > 2D0, with D0 the box counting dimension of the attractor,
in order to have almost every embedding of the original phase space being
one to one for the states and the Jacobian (Immersion).
Sauer et al. also considered the question, whether filtering the data could
affect to possibility of a proper embedding. The result was, that the appli-
cation of finite impuls response (FIR) filters to the delay coordinates would
still allow an embedding, as long as enough independent observables will
be considered. On the other hand, IIR filters might change the properties
of the dynamical system (they are a dynamical system by themselves) and
therefore affect the dimension and entropies of the whole system. Consider
for instance the following extented Henon map:

xn+1 = 1−Ax2
n +Byn (3.15)

yn+1 = xn (3.16)

zn+1 = αzn + xn (3.17)

Even for |α| < 1 this additional degree of freedon can increase the attractor
dimension.
Up to this point we only discussed to which extend the properties of a given
dynamical system can be recovered in the reconstructed phase space, e.g.
by using a delay embedding. Here two remarks are in order:

1. For practical applications there might be better or worse phase space
reconstruction. For instance, in the case of the delay embedding the
delay time τ has to be selected, which we set to 1 so far, but which
can be set arbitrarily in principle — with some exceptions for periodic
processes, remember the discussion of the aliasing problem. Also, if
more then one observable is available, one can ask, which coordinates
should be used, delay coordinates from only one, or some mixed delay
vector of the two, but which one? There is up to now no general
method to find optimal state space reconstructions, but there are some
pragmatical approaches available, which we will discuss later.

2. Up to now we startet with a dynamical system and a given “true”
state space. This is, however, not the situation, which we will find
in practice. There we want to characterize the system, which has
produced the data, but there is nothing like a “true” state space - there
are only equivalent representations of one physical system and one of
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them is our state space reconstruction. There might be, however, some
of them easier to interpret than others.

False nearest neighbors

TISEAN program: false nearest
How can we detect a sufficiently large embedding dimension m? One Possi-
bility is to look for so called false nearest neighbors (Kennel et al. (1992)).
The idea is to use the geometrical structure induced by the deterministic
character of the dynamics, i.e. the fact that the attractor lies in a low-
dimensional manifold. As long as the embedding dimension is too low,
there is no one to one embedding of the attractor and neighbouring points
in the embedding space might not be neighbours in the phase space. Thus
if a point xxxi is a nearest neighbour to xxxj in m dimensions, but not in m+ 1
dimensions, it is called a false neighbor 2 .
Then with increasing m the fraction of false nearest neighbours is estimated.
If this fraction drops for some m∗ this is a good candidate for a minimal
embedding dimension. Usually, it drops already for m > D0, which might
not be sufficient as an embedding dimension, depending what one wants to
analyze. There are, however, some pitfalls of this algorithm, which one has
to aware of:

� In chaotic systems also true neighbours become more seperated when
increasing the embedding dimension due to the effect of the chaotic
dynamics.

� If the data are noisy the signature of the determinism becomes weak-
ened.

� If the attractor is strongly folded in the reconstructed phase space the
neighborhood size has to be small enough to separate several sheets of
the folded attractor.

3.1.3 Dimension and entropy estimation

Box-counting dimensions and — entropies

TISEAN implementation: boxcount.
Univariate data: Let us start with a time series ofN data points {x1, . . . , xN}.

2In false nearest a slighty different criterion is used: if the distance in m + 1 is larger
than factor times the distance in m dimensions it is considered a false nearest neighbor.
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If we have data from an interval [xmin, xmax] encoding the data with k-
symbols corresponds to a partition of the reconstructed phase space with
hypercubes of side length ε = xmax−xmin

k . In the m-dimensional recon-
structed phase space spanned by the points xxxn = (xn, xn−1, . . . , xn−m+1)
we can count how often each of the hypercubes is visited. The relative fre-
quencies defines a probability distribution on the cells of this partition and
we can estimate its Shannon entropy

H(m, ε) = −
∑

pj log pj with pj =
nj
N

(3.18)

The information dimension can then be estimated by looking at the slope
of H(m, ε) with respect to − log ε, because

H(m, ε) = const−D1 log ε+O(ε) .

Clearly, for k = 1 and therefore ε = xmax− xmin only one box is filled, with
p = 1 and H(ε) = 0. On the other hand, for sufficciently small ε, each cell of
the partition contains only one point therefore pj = 1/N and H(ε) = logN .
This is clearly a finite sample effect. The entropy (3.18) is only a good
estimate of the entropy of the invariant measure if ε is not too small, or N
is large enough, respectively. For a more detailed discussion of finite sample
effects and its correction see Grassberger (2003).
The dimension

D1 = lim
ε→0
− Hε

log ε
(3.19)

is called the information dimension. It is possible to introduce a whole
family of Dq, the so called Renyi dimensions, using the Renyi entropies

H(q)(ε) =
1

1− q
log
∑
j

pqj (3.20)

and corresponding dimensions

D(q)(m, ε) = lim
ε→0
−H

(q)
ε

log ε
. (3.21)

Exercise: Show using the rule of l’Hospital that

lim
q→1

H(q)(ε) = −
∑

pj log pj .

If the Dq are different the system is called multifractal. Several methods,
like multifractal analysis and the thermodynamic formalism builds upon the
Renyi entropies and dimensions, respectively.
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Estimating the KS-entropie

Estimating the KS-entropy using the box-counting entropy estimatesH(m, ε)
is straightforward:

1. Find an embedding dimension m0, which is large enough, at least
m0 > D0.

2. Estimate H(m, ε) for some values of m ≥ m0. Estimate the conditional
entropies

h(m, ε) = H(m+ 1, ε)−H(m, ε) (3.22)

plot h(m, ε) as a function of log ε and look for a plateau h(m, ε) ≈ const
at some ε range. The ε has to be large enough to minimize finite sample
effects, but also small enough to resolve the deterministic structure.

3. If the h(m, ε) remains also constant for increasing m the value might
be used as an estimate for hKS .

There are, however, severe problems with this procedure. Although the
h(m, ε) are monotonically decreasing, i.e. h(m, ε) ≥ h(m + 1, ε) we cannot
expect that h(m, ε) estimated from the data gives an upper bound for the
h(∞, ε), because the finite sample effects lead to an underestimation of the
conditional entropies. Thus also alternative methods should be used to
estimate the KS-entropy from a time series, such as the correlation entropy
and the Lyapunov exponents.

The correlation dimension

TISEAN implementation d2
The most popular quantity from nonlinear time series analysis is the cor-
relation dimension. For low dimensional data it can be reliably estimated
already from relatively short data sets with a relatively simple algorithm.
Mathematically the correlation dimension of a measure µ is defined as fol-
lows:

D2 = − lim
ε→0

log
∫
X µ(B(xxx, ε))dµ(xxx)

log ε
(3.23)

with B(xxx, ε) denoting the Ball of radius ε centered at point xxx, i.e. the set
of points yyy with ||xxx − yyy|| < ε. It is estimated from N data points via the
correlation sum

C(ε) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(ε− ||xxxi − xxxj ||)
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with Θ being the Heaviside step function Θ(x) = 0 if x ≤ 0 and Θ(x) = 1 if
x > 1. That means we count the fraction of distances between data points
in the phase space, which is smaller than ε. In the limit N →∞ we expect
C to scale like a power law, C(ε) ∝ εD, and we can define the correlation
dimension by

D2(N, ε) =
∂C(ε,N)

∂ log ε
(3.24)

D2 = lim
ε→0

lim
N→∞

D2(N, ε) (3.25)

In practice, however, we have only a finite amount of data, so we cannot
perform the limits and so he have to estimate the dimension at finite res-
olution ε. Therefore one usually plots D2(m, ε) via log ε (see Fig. ??) for
the example of the henon map. Then one has to identify a region, where it
is approximately constant and can then estimate it by fitting a stright line
in the log-log plot of C(ε). This plateau or scaling range is limited on the
large scales, because if ε is too large, the structure of the attractor cannot
be resolved and usually the dimension is overestimated3, while the lower
end might be determined by the accuracy of the measurement (how many
digits), the number of data points and/or the amount of noise.
If the embedding dimension m is too small and the amount of data is suf-
ficiently large the plateau should appear at the value of the embedding
dimension D2 = m. Only if the embedding dimension is larger than D2 we
can expect to find a plaeau et the value of the attractor dimension. This
happens usually alread for m > D0 and not only for m > 2D0, the cor-
rect embedding dimension. The explanation is that the self-intersections of
the attractor have zero measure and therefore do not affect our dimension
estimates. However, for prediction or modelling this self-intersections are
important and that m might be too small.

Temporal correlations and the Theiler correction

There is an important practical problem, which lead to many spurious di-
mension estimates in the past, the problem of temporal correlations. We use
the number of neighbours of xxx with a distance smaller than ε to estimate
the measure of µ(B(xxx, ε)), i.e. the probability to find a point in the ε neigh-
bourhood of xxx. If now the actual neighbours of these points are not only

3Note that this might be totally different for strongly correlated data, such as highly
sampled flow data.
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neighbours in the phase space but also neighbours in time, we get obviously
a biased estimate. There might be even contributions to this bias from the
other points in the neighbourhood and their temporal correlated neighbours
if they are also neighbours of the first point. Theiler (1986) proposed there-
fore to exclude all points in a teporal window around the refence point from
the calculation. This is sometimes called the “Theiler window” nTW . The
formula for the correlation sum then reads

C(ε) =
2

(N − nTW (N − 1− nTW )

N∑
i=1

N∑
j=i+nTW+1

Θ(ε− ||xxxi − xxxj ||) .

To determine a good value of this window Provenzale et al. (1992) introduced
the so called space time separation plot (in TISEAN stp).

3.1.4 Estimating the Lyapunov exponents

The largest Lyapunov exponent

TISEAN: lyap k, lyap r For the restimation of the largest Lyapunov expo-
nent the expansion rate has to be estimated. This is done by calculating
the logarithm of the mean difference between points which were initially in
the neighbourhood of a reference point and finally also averaging over these
reference points:

S(∆n) =
1

N −∆n

N−∆n∑
n=1

log

 1

|U(xxx′)
|
∑

yyyn∈U(xxx′)

|vyn+∆n − xxxn+∆n|

 (3.26)

Then the linear slope of S(∆n) should be an estimate of the largest Lya-
punov exponent, becaue the difference will be dominated by the largest
exponent. Beside the usual embedding parameters one has also to specify
the neighbourhood, either by its diameter ε or by the number of neighbours.
The program lyap k estimates the stretching factor for a set of neighbour-
hood sizes and provides some statistics about the numbers of neighbours
found.

Lyapunov spectrum

A reliable estimation of the Lyapunov spectrum is in most cases only possible
if the system equations are known or a global model is available for a given
data set. In this case we can estimate the Jacobian from the equations.
Nevertheless, the product of the Jacobians will become singular, so it cannot
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be evaluated. Therefore usually a procedure introduced by Bennetin et al.
(1978) is used: A set of orthogonal vecors, spanning the phase space is
iterated using the linearized dynamics. After a few steps the vectors become
more and more aligned in the direction of the largest Lyapunov exponent.
Therefore the vectors are iteratively othonormalized, beginning with the
largest one and the scaling factors are stored. The Lyapunov exponents are
then estimated by the averages of the logarithms of the scaling factors.
One possibility to estimate the Lyapunov spectra from data would be to
estimate the Jacobians directly from the data (TISEAN: lyap spec). This
corresponds to fitting loacally linear models, which will be discussed later.
At this point we will only mentions some problems of this approach:

� The local neighbourhoods used for the linear fit has to be large enough
to avoid fitting the pecularities of the noise.

� On the other hand side the local neighbourhood has to be small enough
not to smear out the nonlinear structures of the attractor.

� Very often this method does not provide robust estimates of the ex-
ponents. Thus, although conceptionally appealing because it contains
all information about the invariants, only estimating the Lyapunov
spectrum from data might be actually a bad idea.
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