
Chapter 1

Introduction

If we want to analyze experimental or simulated data we might encounter
the following tasks:

• Characterization of the source of the signal and diagnosis

• Studying dependencies

• Prediction

• Modeling

These tasks are not independent. In fact, they are interrelated, but not
identical. Modeling is the most general, but also most challenging task: If
you have a good model for your data, you can use it to predict future data,
you can use the model parameters to characterize the data and in particular
you can use the parameters representing coupling constants between differ-
ent observables to characterize dependencies between these observables.
The main focus of this lecture is the analysis of time series, i.e. the analysis
of possibly vector valued measurements xxxi, that are characterized by an one
dimensional index, which is usually the time, but could be also a spatial
direction.
Classical examples from the statistics literature are the sun spot time series
or the Canadian lynx population data. Other areas with time series data are
geophysics, astrophysics, physiological time series such as ECG and EEG. In
economy there is a whole special area called econometrics dealing with time
series data. Moreover, also DNA and RNA sequences might be considered
as time series. The latter are series of observables with discrete states, we
will, however, in this lecture consider mainly continuous valued time series.
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The traditional models in mathematical statistics were and still are linear
models, i.e. models in which the next value xxxn+1 is a linear function of the
past values plus a stochastic noise term, the residuals. The most general
stationary model of this form can be written in the from of a autoregressive
(AR) moving average (MA) model, short ARMA-model.

Xn =
p∑

k=1

akXn−k + εn +
q∑

l=1

blεn−l . (1.1)

The residuals εn are uncorrelated in time, i.e. 〈εkεl〉 = δkl. If they were not,
than the model would be not the best linear model, because this dependency
should then be also included in the model. The residuals might be, however,
not independent. But modeling these dependencies would require nonlinear
functions. This would lead to nonlinear stochastic models.
But there is a second approach to time series analysis mainly developed by
physicists. It is based on the discovery the phenomenon of deterministic
chaos, i.e. the fact that low-dimensional deterministic systems can also pro-
duce aperiodic seemingly random behavior, and not only constant, periodic
or quasi-periodic motion as had been thought before. Thus the model class
of nonlinear deterministic systems was added as an alternative:

xn = f(xn−1, . . . , xn−p) (1.2)

In many cases the original hope that these phenomena can be described by
such low dimensional deterministic systems had to be abandoned. Examples
are the sleep EEG, the “climate attractor” or the stock market.
During this lecture we will look at some of these examples in more detail.
If we assume that the degree of non-linearity and the degree of stochasticity
could be quantified, the the linear stochastic and the nonlinear deterministic
models are at the two axes of the diagram. The actual scientific challenge
is to fill the large area in the middle — to develop methods for nonlinear
stochastic systems. After a short introduction we will start with linear
models and the related methods such as correlation functions and spectral
analysis. At the end of this part we will deal with the Kalman filter, which
is important also beyond the area of linear time series analysis.
After an intermezzo devoted to wavelet analysis we will proceed in the second
part of the lecture to nonlinear deterministic systems and the corresponding
methods, e.g. the estimate of fractal dimensions, dynamical entropies and
Ljapunov exponents. Finally we will consider some first approaches to deal
with nonlinear stochastic systems: Fitting Langevin equations or Fokker-
Planck equations, respectively, from data.
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1.1 Simple Characterizations

The starting point is a generally vector valued time series xxx1, . . . ,xxxn repre-
senting k observables. In the following we will at first restrict ourselves to
the case of a scalar time series, i.e. k=1. In order to proceed we have to
assume stationarity, i.e. that the data were generated by a process/system,
which remained constant during the time of observation. If cannot assume
that then we have either to shorten the observation time or to extend our
model in order to include also the slow temporal change of the system.
Mathematically we can distinguish between weak an strong stationarity.
Weak stationarity means that the mean and the variance of the process do
not change with time. Strong stationarity means that all probability distri-
butions characterizing the process are time independent. To describe this
in a more formal way we have to introduce the concept of a random variable:

1.1.1 Random variable

At first we need a Probability space (Ω,A, P ) containing of a

Set of possible events Ω: Set of outcomes of an random experiment —
in the case of a coin toss Ω = (heads, tails). Elements denoted by
ω ∈ Ω.

σ-algebra of subsets A: Set of subsets of Ω.

Probability measure P : Each set of events A ⊆ A has a probability 0 ≤
P (A) ≤ 1. P (Ω) = 1.

A random variable X is then a measurable function X : (Ω,A) → S to
a measurable space S (frequently taken to be the real numbers with the
standard measure). The probability measure PX−1 : S → R associated
to the random variable is defined by PX−1(s) = P (X−1(s)). A random
variable has either an associated probability distribution (discrete random
variable) or probability density function (continuous random variable).
This was the mathematical definition. For physicists one could simply say
that a random variable is an observable equipped with a probability for each
of its possible outcomes. In the following we will denote random variables
by capital letters and there values by lower case letters. A random variable
X is said to be discrete if the set {X(ω) : ω ∈ Ω} (i.e. the range of X) is
finite or countable.
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Alphabet: Set X of values of the random variable X.

Probability: p(x) = P (X = x), x ∈ X .

Normalization: ∑
x∈X

p(x) = 1

Expectation value of X:

EP [X] =
∑
x∈X

xp(x)

If the states of our observable are continuous we have a continuous random
variable and we can consider the cumulative distribution function:

Cumulative distribution

F (x) = P≤(x) = P (X ≤ x) =
∫ x

−∞
f(y)dy

A distribution has a density function if and only if its cumulative
distribution function F(x) is absolutely continuous. In this case: F
is almost everywhere differentiable, and its derivative can be used as
probability density:

f(x) =
dF

dx

Probability density f(x): The density itself is not a probability (it can
be > 1), it is related to a probability by

P (a ≤ x ≤ b) =
∫ b

a
f(x)dx .

Normalization ∫ xmax

xmin

f(x)dx = 1 .

Expectation value, mean:

E[X] = µ = µ1 =
∫ ∞

−∞
xf(x)dx

Moments:
E[Xm] = µm =

∫ ∞

−∞
xmf(x)dx



1.1. SIMPLE CHARACTERIZATIONS 5

Median x1/2

F (x1/2) =
1
2

Variance, standard deviation: Variance:

(E[X − E[X]])2 = E[X2]− (E[X])2 = σ2(X) =
∫ ∞

−∞
(x− µ)2f(x)dx

σ is called the standard deviation.

Covariance: For two random variables, the covariance is defined as

Cov(X, Y ) = E[(X − E[X]) · (Y − E[Y ])] = E[XY ]− E[X]E[Y ] .

The correlation coefficient is the normalized covariance

ρX,Y =
Cov(X, Y )√

Cov(X, X)Cov(Y, Y )

1.1.2 Stochastic process

If we have measured a time series and describe any single measurement by
a random variable Xt t ∈ T , then the family of all random variables X =
(Xt)t∈T is called a stochastic process. The distributions F (Xt1 , . . . , Xtm)
are called the finite dimensional marginal distributions of the process X. If
all finite dimensional marginal distributions are invariant with respect to a
shift in time, i.e.

F (Xt1 , . . . , Xtm) = F (Xt1+τ , . . . , Xtm+τ )

the process is called stationary. This condition, however, cannot be tested
in most cases. Therefore there is the weaker condition of weak stationarity,
which is also related to linear systems. To define it we need the notion
of the auto-covariance or autocorrelation function, respectively. The auto-
covariance function is the covariance between Xt at different times t1 and
t2: Cov[Xt1 , Xt2 ]. The autocorrelation function is the normalized auto-
covariance

ρ(t1, t2) =
Cov[Xt1 , Xt2 ]√

Cov[Xt1 , Xt1 ]Cov[Xt2 , Xt2 ]

i.e. the correlation coefficient between the values of X at different times.
If the mean of Xt does not depend on time and the auto-covariance does
only depend on the time lag between the two arguments the process is called
weakly stationary.
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1.1.3 Independent random variables

Given a time series {x1, x2, . . . , xN}, the simplest model for it is to as-
sume that the values of X at different points in time are independent, i.e.
p(xi, xj) = p(xi)p(xj) with the same distribution or density function p(·).
The only thing we can know and the only thing we have to know for an op-
timal prediction is this distribution or density function p(·). For continuous
random variables the most common density functions are

Gaussian distribution:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

which is called normal distribution for µ = 0 and σ = 1. This distri-
bution is ubiquitous, because the sum of random variables with finite
mean and variance is Gaussian distributed (central limit theorem).

Exponential distribution:

f(x) = λe−λx F (x) = 1− e−λx

It describes the inter-event interval distribution of a Poisson process,
i.e. events occurring randomly with the rate λ.

Log-normal distribution: How is a product X of positive random num-
bers asymptotically distributed? The logarithm of the product is the
sum of the logarithms and therefore the logarithm of X is normal
distributed, the product itself is log-normal distributed:

g(lnx) =
1√

2πσ2

(
−(lnx− µ)2

2σ2

)
(1.3)

f(x) = g(lnx)
d lnx

dx
=

1

x
√

2πσ2
exp

(
−(lnx− µ)2

2σ2

)
(1.4)

The log-normal distribution is not a power law, but it can look like a
power law in the log-log plot

ln p(x) = − lnx− (lnx− µ)2

2σ2
= −(lnx)2

2σ2
+
( µ

σ2
− 1
)

lnx− µ2

2σ2
(1.5)

All these distributions depend on parameters. Then a description of a sample
of data by such a distribution would be a parametric model and modeling
would then mean to estimate these parameters from the data.
Let us consider the case of the Gaussian distribution: If we know (or assume)
that the data were drawn from a Gaussian distribution, we have to estimate
two parameters, the mean and the variance of the data.
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1.1.4 Mean

The estimator of the mean is well known - the sample mean is estimated by

µ̂ =
1
N

N∑
n=1

xn . (1.6)

It is unbiased and consistent. What does it mean?
Let f̂n = f(x1, . . . , xn) be the estimate of the parameter λ for a given sample
{x1, . . . , xn}. f is called unbiased (erwartungstreu oder unverzerrt), if

E[f(x1, . . . , xn)] = λ (1.7)

for any n, i.e. if there is no systematic error.
A consistent estimator is an estimator that converges in probability to the
quantity being estimated as the sample size grows without bound. An esti-
mator f̂n (where n is the sample size) is a consistent estimator for parameter
λ if and only if, for all ε > 0, no matter how small, we have

lim
n→∞

P{|f̂n − λ| < ε} = 1

In our case this is equivalent to a asymptotically vanishing variance, i.e.

lim
n→∞

σ (f(x1, . . . , xn)) = 0 (1.8)

with σ2(f) := E((f − E(f))2). How can we see that the estimator of the
mean (1.6) is unbiased and consistent?
Unbiased:

E (µ̂) = E

(
1
n

n∑
n=1

xi

)

=
1
n

n∑
i=1

E (xi)

= µ

Consistent:

σ2(µ̂) = E (µ̂− E(µ̂))2

= E

(
1
n

n∑
n=1

(xi − µ)

)2

=
1
n

σ2(x) .
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If we consider the mean square error (MSE) of our estimator

MSE(f) = E[(f − λ)2] ,

it can be decomposed into the variance of the estimator and a contribution
of the bias

MSE(f) = E[(f − E[f ])2] + (E[f ]− λ)2 . (1.9)

1.1.5 Variance

The variance of a sample could be estimated by

σ̂′
2

=
1
n

n∑
i=1

(xi − µ̂)2 .

Now, what about the bias of this estimator?

E(σ̂′
2
) =

1
n

E

(
n∑

i=1

(xi − µ̂)2
)

=

=
n− 1

n
σ2(x)

Thus, this estimator is biased. An unbiased estimator of the variance is
therefore

s2
n = σ̂2 =

1
n− 1

n∑
i=1

(xi − µ̂)2 .

1.2 Hypothesis testing

If we have only the data, however, we can only calculate a value of the pa-
rameter, but we cannot calculate the bias and the variance of the estimator.
How reliable is our estimate? There are several possibilities to deal with this
situation: A possibility often encountered is the use of confidence intervals.
If we have an estimates x̂, lying in the confidence interval [x̂−∆x, x̂ + ∆x]
with a confidence level 0.95, this means that if we could repeat the exper-
iment infinitely often in 95% of the cases the true value would lie in the
interval. It does NOT say that the true value is in the interval with proba-
bility 0.95.
A second possibility is to estimate the likelihood of a certain observation,
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i.e. how likely was the observation of the given data under the assumption
that the observed parameter is the true one. This is not so informative
for a single estimation, but it is useful to compare different models for the
same data (testing two specific hypothesis against each other). Moreover,
it is used to derive estimators for model parameters, which are then called
maximum likelihood estimators. We will come back to that.
A directly related question is the problem of hypothesis testing. Usually we
estimate these parameters in order to test some hypothesis. One example
which we already encountered is stationarity. We could ask, whether the
mean and the variance of our data are constant in time, i.e. whether our
data are (weakly) stationary. Thus we can estimate the mean and the vari-
ances for different subsets of our data and we have then to decide whether
they agree with the assumption of stationarity or not. That is, we have to
test against the hypothesis of stationarity, which is called the null hypothe-
sis in this case. Another simple example is the following: Let us assume we
have two samples of data recorded under different conditions and we want
to know, if this condition influences our observable. Thus our hypothesis
would be that the two distributions are different. The simplest thing one
can ask then, is, whether the mean of the two samples is different or not.
This is done in the following way: First we need a so called test statistic
T , which is a function of the measured sample. First a null hypothesis is
formulated - this is the negative result we want to test against. In our case
this would be that the condition has no influence and the two means are
equal and therefore the expectation value of our test statistic is zero. Then
we characterize our estimate of the test statistic (the difference of the two
means) by the probability that this difference (or a larger one) would have
been produced simply by chance supposed the null hypothesis is true, i.e.
the mean values of the underlying distributions are equal. This probability
is given by

p = P (abs(T ) ≥ T̂ |µ1 = µ2) .

This probability is often called the “p-value”. The difference between out
two sample means is significant if its p-value is smaller than some threshold
- 0.05 or 0.01 are typical significance thresholds. This p-value measures the
probability of an error of first kind or false positive and the corresponding
threshold is often denoted by α in a test setting and called the size of the
test. There is, however, the second possibility that despite that the null
hypothesis is false, it is not rejected by the test. This is called an error
of second kind or false positive. The corresponding probability is usually
denoted by β. To specify β the alternative hypothesis have to be known,
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i.e. we have to make assumptions about what is truly the case instead of
the null hypothesis. 1 − β is then also called the power of the test against
this alternative hypothesis. If only the null hypothesis is specified this error
is not determined.
So, in general to perform a test we need a test statistic T and we need its
distribution under the assumption that the null hypothesis is valid. Among
all the sets of possible values, we must choose one that we think represents
the most extreme evidence against the hypothesis. That is called the critical
region of the test statistic. The probability of the test statistic falling in the
critical region when the null hypothesis is correct, is the α value (or size) of
the test. The test has to be designed in such a way that its power against
the possible alternatives is maximized.
Let us assume that we know that our test statistic is normally distributed.
It is then called a z-statistic and the corresponding test z-test.

z =
µ̂− µ0

σ/
√

n
.

If the possible alternatives are only distributions with positive means, we
can define the critical region as x ≥ xα with

F (xα) = 1− α ,

and asking whether z is larger than xα would be a one-sided test with
xα ≈ 1.6449. If we want to perform a two-sided test, we have to require
that −xα/2 < z < xα/2 with xα/2 ≈ 1.96 (use norminv in MATLAB).

1.2.1 The χ2 distribution

An important distribution for testing hypothesis of Gaussian distributed
random variables is the χ2 distribution. Let us assume we have n samples
drawn from the same Gaussian distribution with mean µ and variance σ2.
The sum of the squares of the samples is then distributed according to the
so called χ2 distribution:

χ2 = x2
1 + x2

2 + . . . + x2
n

F (χ2) =
1

Γ(λ)2λ

∫ χ2

0
uλ−1e−

1
2
udu

with λ = 1
2n and n called the number of degrees of freedom.

The importance of this distribution comes from the fact that it describes the
distribution of the normalized estimator of the variance of a sample (n−1)s2

n
σ2

is χ2 distributed with n− 1 degrees of freedom.
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1.2.2 t-Test

All tests with a test statistic distributed according to students t-distribution
are called t-tests. The test statistic in the simplest case for testing the sample
mean against a given value µ0 is the t-statistic

t =
µ̂− µ0

sn/
√

n

with df = n− 1 degrees of freedom and with the density function

F (t) =
Γ(1

2(df + 1))
Γ(1

2df)
√

df

∫ t

−∞

(
1 +

t2

df

)− 1
2
(df+1)

Most of the analytic results for parametric tests in statistics start with the
assumption of normal distributed measurements. If this is not the case
one can use non-parametric tests based on rank order statistics. Or one
uses Monte Carlo procedures were one generates samples from distribution
corresponding to the null hypothesis.


