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Measurement noise and dynamical noise

Measurement noise: Here the dynamical system is still deterministic
Xnt1 = F(xp)
but observed via a noisy channel
Yn=h(xp) +v,.

This case is dealt with by noise reduction methods.

Dynamical noise:
Xnt1 = F(xn,&n) -

Here we have a qualitative different dynamics. The noise
term can stand for high-dimensional and/or high-entropic
processes. In the following we will study under which
conditions we can apply the mthods developed for
deterministic systems also in this case.
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Estimating the noise level

Why should we know the noise level?
@ Is there any visible noise at all?
@ Caracterisation of the data

@ Determining the neighbourhoodsize for noise reduction and/or local
constant or local linear prediction
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Estimating the noise level from entropies - Differential

entropy

Literature: Cover/Thomas, Elements of Information Theory, Chapter 9
@ Differential entropy

H(x) = — / dxp(x) In p(x)

@ Example: Differential entropy of a uniform distribution in [0, ],

p(x)=1/s.
H(x)=1Ina
@ Example: Gaussian distributed random variable with standard
deviation o.
1 _ 2
p X = e 202
() V2mwo?
1
H(x) = 5(1 +In270?)

Olbrich (Leipzig) 13.06.2008 4/1



Maximum entropy property of the Gaussian distribution

@ Of all probability densities p(x) with a given standard deviation o the
Gaussian distribution has maximal entropy. Thus

1
H(x) < 5(1 +In270?)
for an arbitrary distribution p(x) with standard deviation o.

@ Therefore the differential entropy H(x) provides a lower bound for the
standard deviation:
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Transformation rule for the differential entropy

@ Transformation rule for an invertible transformation y = f(x)

H(y) = H(x) + [ dxp(x)n ()

because g(y)dy = p(x)dx and therefore

-1

aly) = p(x) | -
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Differential entropy of the noise

@ Stochastic system:

Xpn+1 = F(Xn’ e ’Xn—m’gn) .

In the following X, = (Xn,- .., Xn—m)-
@ Defines a map f : (xp,&n) — (X, Xnt1)-
@ Transformation rule
of

H(xps1,%n) = H(xp, &n) + (In % ).

@ Conditional entropy

H(xpy1lxn) = H(xpy1,xn) — H(x;,)

= H(xm€) — H(xy) + (I §—§>
— H(E) + (n §—§>
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Differential entropy of the noise

@ Stochastic system:
Xpn+1 = F(Xn’ e ’Xn—m’gn) .

In the following x, = (Xn,- -+, Xn—m)-
@ Defines a map f : (xp,&n) — (X, Xnt1)-
@ Transformation rule

of

H(xnt1,Xn) = H(xn,&n) + (In ‘8_5
@ Conditional entropy
f
Hm ) = H(E)+ | 5

o Additive noise xp41 = F(Xn, ..., Xn—m) + &n

H(xnt1lxn) = H(&n)
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Noise amplitude from the conditional entropy

o Additive dynamical noise: Asymptotic behaviour of the conditional
entropy only depends on the noise!

@ Lower bound of the effective noise amplitude

o > eH(Xn+1|Xn)_1/2

T Vo

@ Resolution dependent entropy
H(xnt1]%ni €) = H(Xnt+1|xn) — In€ + O(e)

@ A similar, but less rigorous reasoning is possible for the correlation
entropies based on the correlation sum

H®)(x;2¢) = —In C(x; €)
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Noise level from the correlation entropies

@ Using H(x;2¢) = —In C(x; €) we get for the condtional correlation
entropies

h®(m,e) = InC(m,e/2) — InC(m+1,¢/2)
contained in the output files *.h2 of d2.

@ The differential Renyi order g = 2 entropy for a probability density
p(x) is defined as

H®(x) = —1In / dxp(x)?
and therefore for the Gaussian distribution

y 1
Heuss = 5 In(47) + Ino

@ Approximate estimation of the noise amplitude (only lower bound in
the case of additive noise)

1 eh(z)(m,e)—i-ln €
Van
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Estimating the noise level - measurement noise

Schreiber (1993,1997) proposed a way to estimate the noise level from the
correlation dimension.
Using the maximum norm to calculate the distances, one gets

C(d,e) = C(m,e)[V2erf(e/20)]9™™

with d > m being embedding dimensions and o being the standard
deviation of the (assumed) Gaussian measurement noise and

erf(z) =2/\/7 [ e — dx.
With

D(m, €) = %C(m, 8

one gets
2 2
d—mee /%

D(d.€) = D(m. ) + = o)
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Estimating the noise level - measurement noise

242
d—mee /%

o/ erf(e/20)

D(d,e) = D(m,e) +

can be rewritten as

D(d,e) — D(m,e) € ce=c /40’
d—m  oy/merf(e/20)
= g(e/o)
with ,
1 xe /4

§X) = =)

The noise level can then be estimated by fitting the function g(e/o) to

D(d,e)—D(m,e)
d—m '
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Dynamical vs. Measurement noise

Dimension Entropies

6 T
noise —— meastrement noise
14 dynamical noise ——— dynamical noise
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Linear vs. Nonlinear models

If a noisy time series is given one might be interested, whether it is useful
to apply non-linear methods or whether linear methods are sufficient.
@ Local linear vs. global linear (/fo-ar)

@ Surrogate data tests: Testing against a (in principle arbitrary) null
hypothesis by producing an ensemble of data according to this null

hypothesis.

@ Null hypothesis for the test against “Linearity”: linear stochastic
system observed with a nonlinear measurement function (allowing for
Non-Gaussian distribution of the data)

Xp = Axn—l +£n
yn = Cx,+v,
Sp = h(.Vn)
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Surrogate data test

© Generate an ensemble of surrogate data sets according to your null
hypothesis

© Evaluate a test statistics on your original data set and on the
surrogate data

© If the value on your data is significantly different from the values on
the surrogate data sets you can reject the null hypothesis.
Possible test statistics:
@ Prediction error (predict — local constant prediction)
@ Dimension
@ Entropies or entropy based quantities

@ time reversal asymmetry (timerev)

((xn — Xn—d)3>
((Xn = Xn—da)?)
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FFT surrogates by phase randomization

© Estimate the discrete Fourier transform (DFT) of your data, usually
done by FFT _
Xk = ayexp' ok
© Randomize the phases ¢, according to a uniform distribution
© Transform back into time domain

© Surrogates have the same sample spectrum estimate as the original
data.

© TISEAN: surrogates -S -i0

Problems:

o If the marginal distribution of the data is not a Gaussian, the
surogates have a different distribution than the original data = Null
hypothesis involves Gaussianity.
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Amplitude adjusted Fourier (AAFT) surrogates

After randomizing the phases the amplitudes are readjusted to match the
exact distribution:

© Rank order both your data and the FFT surrogate

© Replace in the surrogate each data point with the data point of the
same rank.

© TISEAN: surrogates -il

Problem: This amplitude adjustment does not conserve the spectrum.
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Iterated amplitude adjusted Fourier (IAAFT) surrogates

@ Produce FFT surrogates and save the Fourier amplitudes
@ Perform the amplitde adjustment

@ Make the Fourier transform, replace the Fourier amplitudes a, by the
amplitudes from step 1. and transform back

@ lterate 2. and 3. until no improvement can be seen.

@ TISEAN: surrogates, option -S generates surrogates with the exact
spectrum estimate, without with the exact distribution.
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Example - Lorenz
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Example - Lorenz
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Example - Lorenz

original surrogate

X(t+208)

1
x(t+208)
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Example - Lorenz

Test statistics: prediction error for local constant prediction, m =5,
d = 10 with predict

1.01

‘ Surrogaté
Data
1.005 | B
1r 1
0.995 H
0.99 L L L L L L
0 0.5 1 15 2 25 3 35

prediction error
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Problem whith the actual implementation

@ Surrogate data have approximately the same FFT based sample
estimate of the power spectrum. This might be a bad estimate of the
power spectrum of the underlying process (remember windowing)

@ Possible improvement: use endtoend to minimize discontinuities in
the periodic continuation

@ This does not help in all situations. There might be problems in
particular in the high frequency range, which might be reflected in the
predictability.
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Example - AR(5) - test statistic predict

Data set generated by an AR(5) process.

Spectrum estimated by
fitting an AR(5) model Prediction errors

100000 T T T T T T 1.01 T T T T T T T
data —— rl jinal data

o
urrogates selected orlglna\ data
10000 | surmogates after endtbend surrogates
surrogates of selected data
1000 1.005
100 k|
<
& 1
10} k|
s ]
0.995
01¢p e
0.01 . . . . . . 0.99 L AL .
0 10 20 30 40 50 60 105 11 115 12 125 13 135 14 145 15 155 16
f prediction error
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Stochastic processes

A stochastic proess is called Markovian if for t > t;

p(Xt‘XtUthu cee 7th) = p(Xt|Xt1)

i.e. conditioned on a state in the past at t;, the actual state is independent

on all states at t < t1. It can be tested by the_ Chapmann-Kolmogorov
condition

p(Xv t‘th) = /dxtlp(xt‘xtl)p(XtI‘XtZ)

for arbitrary t;,t > t; > t». Or by the conditional mutual information

MI(Xe : Xe, | Xe,) = / dxdxe, d>xe, p(Xe, Xty Xty ) 10g Pl xt) _
p(xe|xt)
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Fokker-Planck equation

For a certain class of Markov processes the evolution of the the phase
space density p(x) evolves according to a Fokker-Planck equation

Ip(x,t) 0

82
o a—xD(l)p(x, t) + WD@) p(x, 1) .

Equivalent Langevin equation:

&~ F) + Gor

with I being a Gaussian white noise process

(Me()Tj(t) = 20k j0(t — 1) .
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Fokker-Planck equation

For a certain class of Markov processes the evolution of the the phase
space density p(x) evolves according to a Fokker-Planck equation

op(x,t 0 0?
gt ) _ —a—xD(l)p(x, t) + WD(2>p(x, t).

Equivalent Langevin equation:

dx

= F(x)+ G(x)r

@ The drift term (Stratonovich interpretation)

0

e 0

1
D,-( ) = Fi+szj
kj
is related to the deterministic part.
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Fokker-Planck equation

For a certain class of Markov processes the evolution of the the phase
space density p(x) evolves according to a Fokker-Planck equation

op(x, t 0 0?
08 D D, 1) + 2D px, 1)
Equivalent Langevin equation:
dx
= F(x)+ G(x)r
@ Drift term 5
(1)
D;” =Fi o Gij
i + ; GkJ an G.I

@ The diffusion tensor )
D = GG
k

is related to the (state dependent) noise amplitudes.
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Drift and diffusion terms as expectation values

In the limit At — 0 one gets

DW(x) = A'LT()AL(x(At)_X(ONX(O):x)
1
= Jlim L EX(AL) = x(0)}x(0) = x]

i.e. expectation value of x(At) — x(0) conditioned on x(0) and

®ij(x) = im 2AtE[( x(At) —x(0)i(x(At) — x(0));|x(0) = x] .
The drift term can be estimated robustly from data - in fact it is the local
constant predictor.
= In the case of additive dynamical noise we can use /zo-run for
prediction and with the option -% for generating data.
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Finite time corrections for the diffusion term

For the estimation of the diffusion tenor finite At corrections have to be
taken into account. Several proposals were made:
Firsts order corrections: Ragwitz and Kantz (PRL 2001)

DP)(x) ~ it(E [(x(At) — x(0))(x(At) — x(0)) T |x(0) = x]
—(At)2DWDM Ty
= it Cov[(x(At) — x(0))(x(At) — x(0)) " x(0)]

Higher orders: See again Ragwitz and Kantz (2001), but also the comment
by Friedrich et al. (2002) and the reply of the authors.
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