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What are critical phenomena?

Critical phenomena occur in critical states.

A system is in a critical state, if it is extremely susceptible to small
perturbations. More formally: divergence of susceptibilities.

High probability of ,,extreme events” — critical fluctuations (response
and fluctuations are related by dissipation-fluctuation theorems)

Properties of critical states: self similarity, no typical length and/or
time scales → power law correlations → long-range or long-term
correlations, respectively.

Slowly decaying correlations ⇒ Criticality as paradigm for complexity.

Critical states are observed at continous phase transitions
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Phase transitions

1 Heterogeneous systems: qualitative changes of macroscopic properties
at boundary layers ⇒ the hommogenous parts are called phases

2 Qualitative change of macroscopic properties of a homogeneous
system due to a changing control parameter ⇒ phase transition

3 Usually a phase transition is related to a change in the degree of order
in the system quantified by the order parameter —- spontaneous
symmetry breaking

4 Examples:

solid-fluid-gaseous
Magnetic phase transitions: Ferro- and antiferromagnetic
Structural phase transitions
Macroscopic quantum phenomena: superconductivity, suprafluiditiy,
Bose-Einstein condensation
...
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Thermodynamic potentials

Scalar function of the state variables (control variables) of the system.
which represents the state of the system, depndent variables as
derivations

First law of thermodynamics dU = δQ − δW .
With the entropy dS = δQ

T and the mechanical work pdV we get

dU = TdS − pdV

i.e. the internal energy U as a thermodynamic potential U(S ,V ) for
the state variables entropy S and volume V .

For a gas the state variables are volume V and temperature T leading
to the free energy

F = U(V ,T )− TS(V ,T ) dF = −pdV − SdT
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Conjugated variables - First derivatives

Using pressure p and temperature T leading to the free enthalpy
(Gibbs free energy)

G = U(p,T ) + pV (p,T )− TS(p,T ) dG = −SdT + Vdp

Conjugated variables

S = −
(
∂F

∂T

)
V

p = −
(
∂F

∂V

)
T

S = −
(
∂G

∂T

)
p

V =

(
∂G

∂p

)
T
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Response functions - Second derivatives

Response functions quantify the response of the system with respect
to a changing control parameter or external field, respectively

Specific heat

CV =

(
∂Q

∂T

)
V

= T

(
∂S

∂T

)
V

= −T

(
∂2F

∂T 2

)
V

Kompressibility

κT = − 1

V

(
∂V

∂p

)
T

= − 1

V

(
∂2G

∂2p

)
T

Magnetic susceptibility

χT =
1

µ0

(
∂M

∂H

)
T

= − 1

µ0

(
∂2G

∂2H

)
T
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First- and second order phase transitions

Phase transitions related to singularities in the thermodynamic
potential

Phase transition of n-th order: Discontinouity in the n-th derivation
of the thermodynamic potential

First order: discontinuity in the conjugated variables — discontinuity
in the order parameter

Second order: discontinuity in the suceptibilities, e.g. specific heat or
magnetic suceptibility
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Landau theory — Phenomenological theory of phase
transitions

Gibbs free energy of the ferromagnet as function of the temperature
T and the external field H:

G (T ,H,Meq(H,T )) = U −MH − TS dG = −MdH − SdT

Landau theory: phenomenological ansatz for the Gibbs free energy
(constrained equilibrium)

G (T ,M,H) = −MH + G (T ,M, 0)

Equilibrium: (
∂G

∂M

)
H,T

= 0

(
∂2G

∂M2

)
(H,T )

> 0

Expansion around the equilibrium point:

G (T ,M, 0) = G0(T ) +
a(T )

2
M2 +

b(T )

4
M4
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Landau theory

Equilibrium for H = 0: ∂G0/∂M|T = 0
⇒ M = 0 or M2 = −a(T )/b(T ).

In order to get a phase transition: a(T ) = T−Tc
c + . . .

M ∝ −(T − Tc)1/2

H 6= 0:

G (T ,M,H) = G0(T ) +
T − Tc

2c
M2 +

b

4
M4 − HM

Magnetization:

H =
T − Tc

c
M + bM3 T = Tc :M ∝ H1/3
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Landau theory

Susceptibility:

χT =
1

µ0

(
∂M

∂H

)
T ,H=0

=
1

µ0

1(
∂H
∂M

)
T ,H=0

=
1

µ0

1
T−Tc

c + 3bM2

=

{
c

µ0(T−Tc )
T > TC

c
2µ0(Tc−T ) T < Tc
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Critical exponents

Empirical observation: power law behaviour near the phase transition

ε =
T − Tc

T

Specific heat cV ∝ ε−α for ε > 0, cV ∝ (−ε)−α′

Order parameter: M ∝ (−ε)β

Order parameter and external field at the phase transition T = Tc

M ∝ H1/δ

Susceptibility χT ∝ ε−γ , χT ∝ (−ε)−γ′

Correlation function 〈δM(r + r ′)δM(r)〉 ∝ e−r ′/ξ, ξ ∝ ε−ν

Landau theory: α = α′ = 0,β = 1/2,γ = γ′ = 1 and δ = 3.
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Scaling hypothesis

Kadanoff 1967: The singular part of the thermodynamic potential is a
homogeneous function

GS(λaεε, λaH H) = λGS(ε,H)

ε-scaling: λ = |ε|−1/aε

GS(ε,H) = |ε|1/aεGS(±1, |ε|
aH
aε H)

Critical exponents can be expressed by aH and aε, e.g.

M = −
(
∂GS

∂H

)
H=0

⇒ β =
1− aH

aε

aε and aH are phenomenological parameters, but can be determined
by a microscopic theory ⇒ renormalization group
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Micro— and Macrostates

Classical thermodynamics worked with macroscopic observables:
volume, pressure, temperature, entropy...

If the systems consist of particles, the state of the system is given by
microscopic observables: position, velocity

Statistical mechanics: Explaining the macroscopic properties from
microscopic laws

Maximum entropy principle: A macrostate is described by a
distribution over microstates where the values of the macroscopic
observables are given by the expectectation values and which has
besides maximum entropy, i.e. it contains no additional information
about the system.

Energy constant: uniform distribution on the energy hyperplane —
microcanocical distribution
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Ensembles from the maximum entropy principle

System described by a set of macroscopic observables {Ai} with values Âi ,
which are functions of the microscopic state variables xxx . We are looking
for a distribution p(xxx) with

Âi = 〈Ai 〉 =

∫
dxxxp(xxx)Ai (xxx)

and

S = −
∫

dxxxp(xxx) log p(xxx)−
∑

i

λi (Âi − 〈Ai 〉)
!
= Maximum

with A1 = 1 for the normalization.
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Maximum entropy distributions

P(xxx) =
1

Z
exp

[
−

m∑
i=1

λiAi (xxx)

]

〈Ai 〉 = −∂ ln Z

∂λi

Z =

∫
dxxx exp

[
−

m∑
i=1

λiAi (xxx)

]

Entropy:

S = k
∑

i

λi 〈Ai 〉+ k ln Z

Only A2 = 〈E 〉 ⇒ λ2 = β = 1/kT ⇒ canonical ensemble
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Phase transitions

Partition function becomes singular, but only in the thermodynamic limit
V ,N →∞, N/V = const. For finite systems there is a non-zero
probability to change the phase.
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The Ising model

Binary variables (spins, magnetic moments) si on a lattice

Pairwise interactions with energy −Jijsjsi . Energy
E = −

∑
i (
∑

j Jijsi sj + Hsi ) with the external field H. Canonical
distribution

p(s1, . . . , sN) =
1

Z
eβ

P
i (

P
j Jij si sj+Hsi )

Paradigmatic model for a second order phase transition.

Simplified model to describe the ferromagnetic phase transition.

Jij random - spin glasses

Many applications in a large variety of fields:

Phase separation
Opinion dynamics
Segregation
Memory, pattern recognition (Hopfield network)

Extensions: more states of the local variable — Potts model
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The Phase transition in the mean field approximation

Energy can be written as E = −
∑

i si (
∑

j Jijsj + H).

Approximating the local field by a mean field

(
∑

j

Jijsj + H) ≈ J0〈s〉+ H = H̄

with J0 =
∑

j Jij .

⇒ effective one particle Hamiltonian

pmf (s1, . . . , sN) =
1

Z

∏
i

exp(−βsi H̄)

and
Z = ZN

i Zi = 2 coshβH̄ .
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Properties of the mean field solution

Solution: self-consistent solution of the mean field equation

〈s〉 =
∑
si

si
exp(−βsi H̄)

Zi

=
1

2
tanhβ (J0〈s〉+ H)

Critical exponents in the mean field solution the same as in the
Landau theory: β = 1/2, γ = 1 ,δ = 3.

⇒ Landau theory corresponds to a mean field approximation
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Exact solutions of the Ising model on a square lattice

Exact solution for the 1-D Ising model: no phase transition,
correlation length diverges at T = 0.

Onsager 1944 published an exact solution for the 2-D Ising model
with nearest neighbour interactions on a square lattice.

Critical temperature: sinh22 J
kTc

= 1

Specific heat diverges logarithmically C ∝ ln |T − Tc |
Magnetization M ∝ (Tc − T )1/8

C , α M, β χ, γ M, δ ξ, ν

Mean field 0 1/2 1 3

2-D Ising 0 (ln) 1/8 7/4 15 1

3-D Ising ≈ 0.1 ≈ 5/16 ≈ 5/4 ≈ 5.05 ≈ 0.638
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Excess entropy of Ising model on a square lattice

Erb/Ay, J.Stat.Phys. 115(2004),949

Exact result for the entropy of the 2-D Ising model allows to calculate
the multi-information (integration) I =

∑
i H(si )− H(s1, . . . , sN).

Multi-information becomes maximal at Tc .

1-D Ising model is Markov chain - both excess entropy and
multi-information per spin agree and become maximal for T → 0.
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