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Overview

© Interdependence measures for time-series
o Causality
@ Granger causality

© Operationalisation
@ Vector autoregressive models
@ Transfer entropy and Granger causality

© Problems
@ General Problems of observational causality concepts
@ Specific problem: State Dependence
@ Specific problem: Deterministic Dynamics

@ Estimating causal relationships

© Summary
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Why measuring interdependencies?

Consider two processes X(t) and Y(t). Possible questions:
@ |s there any connection between the processes? Are they correlated?

@ Is there a causal connection between the two processes? Are they
coupled?

Is one process driving the other?

In particular interesting if no detailed model is available, e.g. in
Neurosciences (EEG data) or Econometrics
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@ There is a difference between correlation and causation.

@ Reichenbachs principle: Two processes A and B are statistically
dependent (correlated) if either A causes B, B causes A, or both A
and B have a common cause C.

@ Causality can be formalized using the concept of an intervention
(Pearl): A causes B, if we can change B by intervening at
(manipulating) A.

@ In models from physics: B is coupled to A.
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Some Notation

e "World": aset V of 1 < N < oo elements (agents, nodes) with state
sets X,, ve V.

@ Given a probability vector p on X\, we get random variables Xy, on
V., Xagon ACVand X, onvevV.

@ World dynamics described as stationary stochastic process
Xv(t) ={X\ ()}, veV

@ discrete time
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Definition — Wiener 1958, Granger 1964, Granger 1969

@ past Xy(t—1) = (Xy(t—1),..., Xy(t — 0))
@ subprocess X_j = X\ (j}

@ o(Xa(t)[Xa(t — 1)) denotes the standard deviation of the error
predicting Xa(t) using X a(t —1).

Definition (Causality)

X; causes X;, if o(Xi(t)|Xv(t — 1)) < o(Xi(t)|X_;(t — 1)), i.e. if the
knowledge of the past values of X; will improve the prediction of X;.

Definition (Instantenous Causality)

Xj instantaneously causes Xj, if .
a(Xi(t)|Xv(t —1),X;(t)) < o(Xi(t)|X(t — 1)), i.e. if the knowledge of
the the actual value of X; will improve the prediction of X;.

v
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Definition — Granger 1980

Axiom A: The past and the present may cause the future, but the
future cannot cause the past

Axiom B: X(t) contains no redundant information, so that if some
variable Xy (t') is functionally related to one or more other
variables, in a deterministic fashion, then X(t) should be
excluded from X(t).

E.g. xj(t) = f(xk(t — m)), but also
xj(t) = f(xj(t — 1), xj(t —2),...,xj(t — m), i.e. Granger
excludes deterministic systems.

Definition

X; causes X; if p(xi(t)[xv(t — 1)) # p(xi(t)|x_j(t — 1)), i.e. X;
non-causes X; if X;(t) is conditionally independent on X; given
X_j(t = 1).
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Operationalisation: Vector autoregressive models (VAR)

@ A weakly stationary zero mean stochastic process has an
autoregressive representation

o0
Za x(t — u) +€(t)
u=1

@ X; is Granger non-causal to X; with respect to Xy, if
aj(uy=0 V u.
X; instantaneously non-causes X;, if ¥ = (¢;(t)e;(t)) = 0.
@ In the context of Graphical models: structural equations

@ Problem: Only linear dependencies!
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Transfer entropy — Information theoretic version of

Granger casuality

@ Schreiber 2000: Transfer entropy measures “directed information
flow"; originally only bivariate

Tjmi = MI(Xi(t) : X;(t — 1)|Xi(t - 1))
= H(Xi(1)[Xi(t = 1)) = H(Xi(1) | Xi(t — 1), X;(t — 1))
@ Palus 2001: Measuring conditional independence using conditional
mutual information = information theoretic formulation of the
Granger causality — X; Granger causes X; if T;_,; v > 0.
Tieiv = MIXi(2) : Xj(t — DIX_(t — 1)
= H(Xi(t)|X_;(t = 1)) = H(Xi(1)| X v(t — 1))
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General Problems of observational causality concepts

@ World description has to be causally complete in order to exclude
common causes.

@ Granger causality defined via conditional independence is purely
observational, no interventions.

e = if Xj and X are synchronized no causal interaction is detected
o But, this case is excluded by Grangers Axiom B!
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Specific problem: State Dependence

Whether e.g. X1 Granger causes X, depends on the representation of the
rest of the world!

Xl(t) = alle(t— 1)+312X2(t— 1)+313X3(t— 1)+€1(t)
Xz(t) = azlxl(t— 1)+322X2(t— 1)+323X3(t— 1)+62(t)
X3(t) = a31X1(t — 1) + 332X2(t — 1) + 833X3(l' — 1) + 63(1’)

can be transformed into

Xl(t) = (311 — 31304)X1(t - 1) + (312 — 313ﬁ)X2(t — 1) + 313X3( ) + 61(t)
Xz(t) (321 — 32304)X1(f — 1) + (322 — 8235)X2(t — 1) + 823X3( ) + 62(1’)
%5(t) = (as— (ass + au)a) — aiza)xa(t — 1) +
(
(

as — (as3 + a12) 8 — a3 ) xe(t — 1) +
a3z — aiza — axf)X3(t — 1) + e3(t)

using X3 = x3 + axy + Bxo with o = ap1/a23 = X3 becomes independent on X
conditioned on X3.
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Specific problem: Deterministic Dynamics

@ Deterministic dynamical system:

x(t) = F(x(t - 1))

Embedding theorem: The map

x(t) — s(t) = h(x(t)) — (s(t),s(t —1),...,s(t — m+1))is an
immersion with nowhere vanishing Jacobian, if m > 2D,y with Dy the
box-counting dimension of the attractor

= state space can be reconstructed from any X;

KS-entropy hks = lim h(X(t)[X(t —1),¢€)
= IImh( i(D)IXi(t —1),¢€)

= MI(X;(t): Xj(t — 1)[X_j(t —1)) =0if hxs =0
= No Granger causality in non-chaotic deterministic systems.

But again, this situation is excluded by Axiom B!
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Examplex: Granger causality in a VAR(2) process

xi(t) = auxi(t—1)+ ax(t — 1)+ e(t)
Xg(t) = 321X1( 1)+222X2( 1)+62(t)

In which way implies aip > (Lbetter predictability of X7 knowing X357
Predicting Xi(t) using only X1(t — 1)
xi1(t) = auxi(t—1)+ apanx(t —2)
+arpanx(t —2) + apea(t — 1) + e1(t)
= aunxi(t — 1) + arpazixi(t — 2) + arpazazix(t — 3)
tarpasyxa(t — 3) + arpamer(t — 2) + apea(t — 1) + e1(t)

Special case ay, =0

Xl(t) = 311X1(t—1)+312321X1(t—2)+312€2(t—1)—|—€1(t)
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Transfer entropy and effective noise level

@ Granger causality: Improving predictability = Reducing noise level
@ Stochastic dynamics for X;(t):

xi(t) = F(xi(t —1),&(1) (&i(1)*) =1

o Differential entropy H(X) = — [ dx p(x) log p(x) transforms for
invertible function y = f(x) according to

HOY) = HX) + [ o plx) tog] ()

because
p(x)dx =gq(y)dy = aqly)= d’;(/);)x i)
Applying this we get o
OO~ 1) = HG) + (in| 52
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Transfer entropy and effective noise level

e Using only the dynamics for X;(t) we got

of

h(xi(t)[xi(t — 1)) = H(&) + (In 96

).

@ Stochastic dynamics for X;(t) and X;(t):

xi(t) = g(Xi(t = 1),%;(t = 1),;(1))  (€5()*) =

@ Same reasoning gives

h(xi(t)|xi(t — 1), x;(t — 1)) = H(&;;) + (In ‘ggj ).
@ Therefore
Ty = (&) — (&) + (n | 5Ly n | ZE |
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Estimating “causal” relationships

@ Linear: Fitting a VAR(m) model to the data, e.g. using least square
estimation (e.g. ar-model in TISEAN) and then testing the
coefficients aj; against zero.

@ Non-linear: Estimating the conditional mutual informations (transfer
entropy) — Partitioning the data (if continous variables) and
estimating the entropies H(X;(t)|X_;(t —1),¢€) and
H(Xi(t)|Xv(t —1),€).

@ Note that the result depends on the state space, e.g. on the
embedding dimensions m;, m; in the Transfer entropy

Tji(mj, mi, €)
= MI(Xi(t) : Xj(t = 1),..., X;(t —m;j + )| Xi(t — 1),..., Xi(t — m; + 1);¢€)
@ The result might depend on €. But, for stochastic systems the
conditional mutual information should converge for ¢ — 0 to the
value for differential entropies!
@ You have to correct for finite sample effects. Finite sample effects lead

to overestimation.
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Dependence on the resolution €

A. Kaiser and T. Schreiber, Information transfer in continuous proces-

T. Schreiber, Measuring Information Transfer, PRL 85(2000),461-464.
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G. 3. Bivariate time series of the breath rate (upper) and
instantaneous heart rate (lower) of a sleeping human. The data
is sampled at 2 Hz. Both traces have been normalized to zero
mean and unit variance.
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Correcting for finite sample effects - effective transfer

entropy

R. Marschinski and H. Kantz, Analysing the information flow between financial time series. An improved estimator for transfer entropy. Eur. Phys. J B
30(2002),275-281.
o Effective transfer entropy: Difference between the usual transfer
entropy and the transfer entropy between X;(t) and a shuffled version
of X;j(t).

— Tj shuffled—i(mi, m;)

)
10000 20000 30000 40000 50000 60000
‘Sample length N
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Application: DAX and Dow Jones

[ e e m e s
s TE DJ=> DAX (logreturns)

[ #— TE DJ=> DAX; DJ shuffled Il 1 S L e B e B L
| 0.03 ¥~ ETE Dow Jones== DAX (log-retums) -+

0.16 - A~ ETE DAX=> Dow Jones (log=retums)
z | 5 0025
a z
> 0M2f 2
g a
5
g | g ooz
N 5
5 :
2 s k]
2 008 @ 0015
£ i
2 o
0.04 - g
——y H
B A m— w
* - 0005
P —
i 2
Block length m in series | [min] 0
Fig. 2. Transfer entropy measuring the information fAow from Block length m in series | [min]

Dow Jones to DAX series, using various partitions of § = 2, . . . . .
. 5 symbols (bottom to top). Upper lines have been cal- Fig. 3. Effective transfer entropy measuring the information

\:ulated on the log-returns of DJ and DAX, for the lower ones flow between Dow Jones and DAX Se"ies and vice versa, nsing
(triangles) the log-returns of the DJ series have previously been four different partitions of § = 2, 3, 4, 5 symbols (bottom to
shuffled. top).
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@ Granger causality asks for interdependencies between stochastic
processes

@ It can be expressed using conditional mutual information (Transfer
entropy)

o If we consider only linear interdependencies it can be studied with
vector autoregressive(VAR)-models

@ One has to be careful with causal interpretations because it is an
purely observational measure.
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