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Summary: Complexity measures for finite systems

“World”: a set V of 1 ≤ N <∞ elements (agents, nodes) with state
sets Xv , v ∈ V .

Given a probability vector p on XV we get random variables XV on
V , XA on A ⊆ V and Xv on v ∈ V .

Measuring statistical dependencies: Integration or Multi-information

I (XV ) :=
∑
v∈V

H(X{v})− H(XV ) = D

(
p(xV )||

∏
v∈V

pv (x{v})

)

Excess entropy

E (XV ) := H(XV )−
∑
v∈V

H(X{v}|XV \{v})
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Summary: Complexity measures for finite systems

“Neural complexity” introduced by Tononi, Sporns and Edelman
(1994) — TSE-complexity:

CTSE (XV ) =
N∑

k=1

(
H(k,N)− k

N
H(N)

)
H(k,N) =

(
N

k

)−1 ∑
Y⊆V
|Y |=k

H(XY )

High TSE-complexity requires low integration for small subsystems
and high integration at the system level:

CTSE (XV ) :=
N∑

k=1

(
k

N
I (N)− I (k,N)

)

I (k,N) =

(
N

k

)−1 ∑
Y⊆V
|Y |=k

(∑
v∈Y

H({v}−H(XY )

)
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Integration, excess entropy and TSE-complexity
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TSE-complexity can be expressed as the sum over the averaged excess
entropy of subsystems of size k.

CTSE (XV ) =
1

2

N∑
k=1

E (k,N) =
1

2

∑
Y⊆V

1( N
|Y |
)E (XY )
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Some properties of the excess entropy for finite systems

1 E (XV ) = H(XV )−
∑

v∈V H(X{v}|XV \{v}) ≤ H(XV )
2 The excess entropy of a system consisting of two subsystems A and B

is always larger than the mutual information between these two
subsystems:

E (XA∪B) ≥ I (XA : XB) .

3 The excess entropy of the union of two subsystems is always larger
than the excess entropy of one of the subsystems.

E (XA∪B) ≥ E (XA) E (XA∪B) ≥ E (XB)

4 The sum of the excess entropies of the subsystems can be either less
or larger than the excess entropy of the whole system.

E (XA∪B) = E (XA) + E (XB) +
∑
v∈A

I (X{v} : XB |XA\{v}) +

+
∑
v∈XB

I (X{v} : XA|XB\{v})− I (XA : XB) .

Olbrich (Leipzig) 16.11.2007 6 / 22



Chain rules - Partioning the system

Divide the system into finer and finer partitions according to the following
rule:

1 Initialization: Start the sequence of partitions by defining as first
partition the trivial one: ξ1 := {V }

2 Step k → k + 1: If all atoms of the partition ξk have exactly one
element, then stop. Otherwise, choose one atom Ak of the partition
ξk that has at least two elements and divide it into two non-empty
and disjoint sets A1

k and A2
k with Ak = A1

k ∪ A2
k . Define the new

partition ξk+1 according to

ξk+1 :=
(
ξk \ {Ak}

)
∪ {A1

k ,A
2
k}

3 Go to the second step. This procedure generates a sequence of
bipartitions Ak = A1

k ∪ A2
k
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Chain rules

Integration: For all k we have the decomposition rule

I (XAk
) = I (XA1

k
: XA2

k
) + I (XA1

k
) + I (XA2

k
) ,

which finally leads to the chain rule for multi-information

I (XV ) =
N−1∑
k=1

I (XA1
k

: XA2
k
) .

Excess entropy: We have the following decomposition:

E (XV ) =
N−1∑
k=1

I (XA1
k

: XA2
k
|XV \(A1

k∪A2
k )) .

Similar terms in both expressions, but in the first case unconditioned and
in the second conditioned mutual information.
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Excess entropy and conditional independence

Time series (forecasting complexity):

EN =
N∑

k=1

k · δhk =
∞∑

k=1

kMI (X0 : X−k |X−1, . . . ,X−k+1)

General case: Chain rule

E (XV ) =
N−1∑
k=1

I (XA1
k

: XA2
k
|XV \(A1

k∪A2
k ))

or with an (arbitrary) ordering of the nodes

EN =
N∑

k=1

N∑
j=k+1

MI (xk ; xj |, x j−1
k+1, x

k−1
1 ) .

Conditional independence ⇒ Markov property ⇒ less terms in the
sums for the excess entropy ⇒ lower complexity
Conditional independence simplifies statistical dependencies
This can be visualized by graphs ⇒ Graphical models
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Conditional independence and conditional mutual
information

Conditional independence: X is conditional independent on Y given
Z , written X ⊥⊥ Y |Z , if p(X |Y ,Z ) = p(X |Z ), i.e. Y is irrelevant for
explaining X if Z is already known. X ⊥⊥ Y |Z ⇔ MI (X : Y |Z ) = 0.

Some properties:
(1) Symmetry X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z
(2) Decomposition X ⊥⊥ YW |Z ⇒ X ⊥⊥ Y |Z
(3) Weak union X ⊥⊥ YW |Z ⇒ X ⊥⊥ Y |ZW
(4) Contraction X ⊥⊥ Y |Z & X ⊥⊥ W |ZY ⇒ X ⊥⊥ YW |Z
(5) Intersection X ⊥⊥ W |ZY & X ⊥⊥ Y |ZW ⇒ X ⊥⊥ YW |Z

if p(X ,Y ,Z ,W ) > 0

(1)-(4) can be shown using the symmetry (1) and the chain rule
(2,3,4) for the conditional mutual information.

These properties are called the Graphoid axioms.
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Second order conditional independence

Correlation function CXY = E [XY ].

Partial correlation function E [(X − X̃ (Z ))(Y − Ỹ (Z ))] with X̃ (Z )
denoting the best linear prediction of X from Z .

Let us denote by X ⊥⊥2 Y |Z that the partial correlation function
between X and Y given Z vanishes. Then ⊥⊥2 satisfies also the
graphoid axioms.

Also some graph properties satisfy this axioms and can therefore be
used to represent conditional independence ⇒ Graphical models

These properties are called Markov properties.
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Graphical Models

Graphical Modelling is an area which has its roots in statistics, but
which also incorporates neural networks, hidden Markov models, and
many other techniques that exploit conditional independence
properties for modelling, display, and computation.

Using conditional independence assumptions the analysis of
high-dimensional problems can be split up into small manageable
pieces, introducing some kind of “modularity”.

These conditional independence structures can be represented
graphically. The resulting networks are often calles Bayesian networks,
a slightly more general term is Probabilistic networks.

Graphical model represents the qualitative structure of a problem.
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Example: Expert Systems
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Bayesian reasoning

Bayes’ theorem:

p(y |x) =
p(x |y)p(y)

p(x)

1 Model inference

p(parameter|data) =
p(data|parameter)p(parameter)∑

parameter p(data|parameter)p(parameter)

with the prior p(parameter), the likelihood model p(data|parameter)
and the posterior p(parameter|data).

2 Inference in the expert system

p(disease|symptoms) =
p(symptoms|disease)p(disease)∑

diseases p(symptoms|disease)p(disease)
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Notions from Graph Theory - I

A graph G is a pair G = {V ,E}, where V is a finite set of vertices,
also called nodes, of G, and E is a subset of the set V × V of ordered
pairs of vertices, called the edges or links of G.

If both ordered pairs (α, β) and (β, α) belong to E , we say that we
have an undirected edge between α and β and write α ∼ β (or
α ∼G β to indicate the relevant graph G). α and β are called to be
neighbours. The set of neighbours of a vertex β is denoted by ne(β).

If (α, β) ∈ E but (β, α) /∈ E , we call the edge directed, and write
α→ β. We also say that α is a parent of β, α ∈ pa(β), and that β is
a child of α, β ∈ ch(α).

The boundary bd(α) of a vertex α is the set of parents and
neighbours of α, the boundary bd(A) of a subset A ∈ V is the set of
vertices in V \ A that are parents or neighbours to vertices in A.

The closure of A is given by cl(A) = A ∪ bd(A).
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Notions from Graph Theory - II

GA = (A,EA) is a subgraph of G = (V ,E ) if A ⊆ V and
EA ⊆ E ∩ (A× A). If EA = E ∩ (A× A), GA is the subgraph of G
induced by the vertex set A.

A graph is called complete if every pair of vertices is joined. A
complete subgraph is called a clique.

A path of length n from α to β is called a sequence
α = α0, . . . , αn = β of distinct vertices such that (αi−1, αi ) ∈ E for
all i = 1, . . . , n.

Let A,B,S disjoint subsets of V . Then S separates A from B if any
path from A to B goes through S .

An n-cycle is a path of length n with the modification that the
endpoints are identical. We say that a graph is acyclic if it does not
possess any cycles. A directed graph, which is acyclic is called a
directed acyclic graph (DAG).
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Directed acyclic graphs - DAG

Contains only directed links (arrows) and no cycles.

Nodes are random variables, the links denote statistical dependencies.
Note the difference to the representation of Markov processes where
the nodes were states of a random variable.

A probability distribution P admits a recursive factorization according
to the graph G if

p(xV ) =
∏
v∈V

p(xv |xpa(v)) .

Interpretation as Bayesian network, belief networks, causal networks
or generative model depends on the interpretation of the conditional
probabilities p(xv |xpa(v)), the transition kernels.

Causal networks (Pearl, 2000): The transition kernels are interpreted
as mechanisms, which allow to study the effect of interventions. The
kernel p(xv |xpa(v) has to be stable under interventions which do not
involve xv .
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Undirected graphs

Undirected graphs contain only undirected links.

If a undirected graph G is used as a graphical model the probability
distribution factorizes according to

p(xV ) =
∏
C∈C

aC (xC )

with C denoting the set of cliques (complete subgraphs) of G.

The aC (xC ) are also called potentials.

This kind of graphical models is also known as Markov random fields.

Examples: Gibbs distributions from statistical mechanics, e.g. Ising
model with next-neighbour interaction

p(x) =
1

Z
exp

−β
−1

2

∑
i∼j

xixj


Olbrich (Leipzig) 16.11.2007 18 / 22



Form the directed to the undirected graph - the “moral”
graph

Let G = (V ,E ) be a DAG. The moral graph G(m) = (V ,E (m)) is
defined as follows:

1 “Marrying” parents, i.e. introducing additional undirected edges
between any two nodes with a common child.

2 Ignoring directions.

If P admits a recursive factorization according to a DAG G then it
also factorizes according to the undirected Graph G(m), because the
sets {v} ∪ pa(v) are complete subsets, cliques, in G(m).
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Markov properties for undirected graphs

Markov properties of a probability distribution P with respect to a graph G:

Pairwise (P): For any pair (α, β) of non-adjacent vertices:

α ⊥⊥ β|V \ {α, β}

Local (L): For any vertex α ∈ V : α ⊥⊥ V \ cl(α)|bd(α)

Global (G): For any triple (A,B,S) of disjoint subsets of V such that S
separates A from B in G

A ⊥⊥ B|S .

Factorisation (F): For C denoting the set of all cliques of G

p(xV ) =
∏
C∈C

ψC (xC ); .

(F ) ⇒ (G ) ⇒ (L) ⇒ (P), but (P) ⇒ (F ) only if all state space are
discrete and the density P is strictly positive.
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Markov properties and d-Separation in DAG’s

A trail in a DAG D is a path in the undirected version D , i.e. where
the directions of the arrows is ignored.

A trail π from a to b in D is said to be blocked by S if it contains a
vertex γ ∈ π such that either

γ ∈ S and arrows of π do not meet head-to-head at γ, or
γ and all its descendants are not in S , and arrows of π meet
head-to-head at γ.

Two subsets A and B are said to be d-separated by S if all trails
from A to B are blocked by S .

A and B are separated by S in G(m)

An(A∪B∪S)
is equivalent to S

d-separates A from B. Thus d-separation for the case of the directed
graph is equivalent to the global markov property in the undirected
case.
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What are graphical models good for?

Propagating evidence for instance in expert systems

Mathematical theory of causality and the identification of causal
effects (Pearl 2000).

General framework for learning parameters and structure from data
including hidden markov models (HMM), generalzed linear models
(GLM) or neural networks

Next lecture: Application to time series - Granger causality, Transfer
entropy and other measures of interaction
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