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Overview

@ Summary Kolmogorov sufficient statistic
© Intuitive notions of complexity

© Statistical complexity
@ Entropy convergence and excess entropy

@ Predicitive information

@ Entropy estimation
@ Entropy of a discrete random variable — finite sample corrections
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Summary Kolmogorov sufficient statistic

@ Kolmogorv complexity

Ku(x[I(x)) = I(p)

pl//(p, (X))—
@ Kolmogorov structure function, x” denotes a string of length n

Kik(x"|n) = min log |S|
p:l(p) <k
U(p,n)=S

x"e S C{0,1}"
o Kolmogorv sufficient statistic: least k such that
Ki(x"|n) + k < K(x"|n) + ¢ .

@ Regularities in x are desribed by describing the set S. Given S the
string x is random,

@ Algorithmic complexity = randomness. But intuitively, complexity
measure should quantify structure, not randomness. Thus it is related
to an ensemble and not a single object.
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Dynamical Systems

all continuous Partial Differential Equations (PDE's)

discetized space | coupled ordinary differential equations (ODE’s)

discretized time coupled map lattice (CML)

discretized state cellular automata (CA)

@ all dynamical systems either deterministic or stochastic

o Digital computer: Finite state automaton - finite number of discrete
states
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Intuitive notions of complexity — Stephen Wolframs

classification of cellular automata

Elementary cellular automata: binary states {0,1}. Next neighbour

interaction. Rules can be coded by numbers 0, ..., 255:
111 110 101 100 011 010 o001 o000 Rule 30
o o o 1 1 1 1 o °%¥ '

Class 1: Evolution leads to a homogeneous state.

Class 2: Evolution leads to a set of separated simple stable or
periodic structures.

Class 3: Evolution leads to a chaotic pattern.

Class 4: Evolution leads to complex localized structures, sometimes
long-lived.
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Intuitive notions of complexity — Stephen Wolframs

classification of cellular automata

class 2 class 4 class 3
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Intuitive notions of complexity — Stephen Wolframs

classification of cellular automata

Propagation of a single perturbation

class 2 class 4 class 3
ordered “complex” chaotic
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Statistical complexity — excess entropy

e K(x|/(x)) — minimal length of a program, which produces exactly
the string x. Most complex strings are algorithmically random.

@ Kolmogorov sufficient statistic: program that describes all regularities
in x and computes the set S, which containes all strings with the
same regularities as in x, but are otherwise random. Algorithmic
complexity can be divided in two parts - regularities and randomness.

@ Same idea for a time series (infinite sequence) provided with a
stationary distribution:

e Randomness per symbol is given by the entropy rate
hoo = lim hy  hp= H(Xo|X_1,...,X_0)

n—oo

o Regularities quantified by the excess entropy (Crutchfield) or effective
measure complexity (Grassberger)

E=lim E, with E,=(Hy—n-h,)  and Hy=H(Xp,...,X1)

n—oo
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Entropy convergence and excess entropy

The idea which led originally to this complexity measure was to use the
converge rate of the conditional entropy to quantify the complexity of a
time series:

fast convergence — short memory — low complexity

slow convergence — long memory — high complexity.

Conditional entropies

= H(Xo|X_1, ..., X_p) = H(Xo, X_1, ..., X_n) — H(X_1, ..., X_p)

decrease monotonically. Decay is quantified by the conditional mutual
information

Shn o= hp_1 — hy = MI(Xo : X_p|X_1,..., XC0) -
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Entropy convergence and excess entropy

Excess entropy:

En = H(Xi,...,Xn)— Nhy
N—-1
= > (ha—hn)  using ho = H(Xy)
n=0
N-1 N
= > Shi  using 1 =G6hy+ hy
n=0 k=n+1

[
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==
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>
=

-
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—

The slower the convergence of the entropy the larger the excess entropy. If
the sequence is Markov' of order m: 6h, = 0 for n > m. Thus E = E,,.
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Predictive information

Bialek et al. (2000) proposed to quantify the complexity of a time series
by the amount of information which the past tells us about the future

/

ored = Ml(past : future) = lim  MI(X_,,,..., Xo: X1,..., Xp,)

Np,nf—00

and called this predictive information.

The predictive information is equal to the excess entropy if the
corresponding limits exist:

/pred =E
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Predictive information

/ pred —

lim M/(X,np,...,Xfl,Xo :Xl,XQ,...,an)

Np,Nf—00

lim  {H(X1,...,%0,) + HX sy, .-, Xo)

Np,NF—00
—H(X_pys s Xoy oo Xn) }
lim  {En, + nfhn, + Eny1 + (np 4+ 1) hn, 41

Np,Nnf—00

_Enp+nf+1 - (nf + np + 1)hnf+np+l}
E

The excess entropy measures the amount of information which is available
from the past for predicting the time series.
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Causal states

: . 0
Causal equivalence: Two past sequences x_
/0

x'_ oo = x§,x"1,... are causal equivalent, if they have the same future, i.e.

= X0, X—1y.-- and

p(x°|x0 ) = p(x¢°|x"° ). The equivalence classes are called causal
states. This notion was introduced by James P. Crutchfield et al. They
called the transition graph between the causal states an e-machine. In
general it seems to be a subclass of hidden Markov models.

Crutchfield and Young (1989): Statistical complexity C, as the entropy of
the stationary distribution over the states. In general there is

C,>E.

Grassberger (1986) called it set complexity in the context of regular
languages.

In general: The excess entropy provides a lower bound for the amount of
information necessary for an optimal prediction.
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Excess entropy — some examples

@ Sequence with period n: h,, = 0 for m > n, in particular hyo = 0. The
entropy Hm>n = log n remains constant for m > n, thus E = log n.
All periodic sequences of the same length have the same complexity
according to this measure. (Alternative: transient information
introduced by Crutchfield and Feldman).

@ Markov chain: hoo = h1. E = dh1 = hg — h1 = MI(Xpt1 : Xn).
@ Chaotic maps: Usually exponential decay of h, — finite E.
e Feigenbaum point: hy, = 0, but h, o< 1/n, thus E diverges.
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Complexity for the period doubling route to chaos

200

v

H(16)/16 1.0 0 L 64
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Figure 6 (a) Statistical complexity (', versus specific entropy H (L}/1 for the period-doubling route to chaos. Triangles denote
estimated (C',. H(1)/L) at 193 values of the logistic map nonlinearity parameter. e-machines were reconstructed using a
subscquence length of I = 16. The heavy solid lines overlaying some of this empirical data are the analytical curves derived
for €' versus Hy(L}/L. (After [24].) (b) At one of the critical parameter values of the period-doubling cascade in the logistic
map the number || V| of inferred states grows without bound. Here r = r. a2 3.5699436715695445 . . . and the sequence length
ranges up to L = G4 where [|V|| = 196 states are found. It can be shown. and can be inferred from the figure, that the per
symbol density of states |[V(L)[|/L does not have a limiting value as L. — . (After [56].)

From Crutchfield/Young 1990. Computation at the onset of chaos.
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Excess entropy and attractor dimension

Deterministic system with continous state observables: The entropy
Hm(e) = H(X, ..., Xm; €) scales with respect to the resolution e:

m < D
Hm(e) = Hy, — mloge + O(e)

m > D
Hm(€e) = const — Dlog e + O(e)

Because h,, = hks does not depend on € we have
Ex —Dloge.

The better one knows the initial conditions of the system the better the
system can be predicted.
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Entropy of a discrete randomm variable — finite sample

corrections

Reference: P. Grassberger, Entropy Estimates from Insufficient Samplings,
arXiv:physics/0307138v1

e N data points randomly and independently distributed on M boxes.
The number n; of points in each box is a random variable with an
expectation value z; := E[nj] = p;N. Their distribution is binomial

N .
P(ni; pi, N) = <n,>P,~’(1 —pi)Vm

@ For p; < 1 Vi the n; can be assumed to be Poisson distributed

P(nj; zj) = e

02.11.2007 18 /

Olbrich (Leipzig)



Entropy of a discrete random variable — finite sample

corrections

o Entropy
M M
H=-— p,-logp,-zlnN—l ziln z;
=1 N < 1
1= 1=

@ Naive estimator

1 M
Hpzive = In N — Nz;n,-ln n;
=

@ In general the estimator is biased, i.e.

AH:=E[H]—H#0.  AHpie <0.
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Entropy of a discrete random variable — finite sample

corrections

@ In the limit of large N and M each contribution z; In z; will be
statistically independent and can be estimated as function of n;:

[e.9]

zilnz ~ zlnz = nio(n;) Elz In zj] = Z nip(ni)P(n;; z;) .

n,-:l

Implizit assumption: n; = 0 gives no information about p;.

o Estimator

1 M
Hy=InN— N; nid(n;)
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Finite sample corrections — Grassbergers Result 1

o Grassbergers result:
E[m)(n)] = zInz + zE1(2)

with the digamma function

—xt

w(x)_dlndi(x) and El_r(O,x)_/loo

e

dt .
t

e For large z zE;(z) =~ e~ %, thus neglecting this term gives the
estimator

M
. 1
Hy=InN— N;n,w(n,-) .
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Finite sample corrections — Comparison with other results

@ Approximations for the digamma function leads to known estimators:

@ ¥(x) = Inx: naive estimator
Q ¥(x) = Inx —1/(2x): Miller correction
9 w(X) <Inx— 1/(2X) < Inx leads to Hy > Huitter > Hhpaive

o Grassbergers best estimator:

1 M
HG:lnN_N;niG""
1=

with
)+ (—1)

Z(n+2k (n+2k+1)

orG1:—’y—|n2 G2:2—’y—|n2 G2n+1:G2nand
Gopnto = Gop + ﬁ for n > 1.

Olbrich (Leipzig) 02.11.2007 22 /24



Finite sample corrections — Comparison between different
corrections

10 10"

Note that ¥(x) + n(nJr)l) corresponds to an approximation of
n G 1
Gn = ¥(n) + ( Z

— (n+2k)(n+2k +1)

with considering only the k = 0 term in the sum.
Olbrich (Leipzig)
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Test — Entropy of a Gaussian distribution

H()+log(e)

L f —o= naive N=10*
o= Miller
—o= W(n)
1361 —o— Y(n)+(-1)"/(n(n+1))
—o— naive N=10°
— 12 (1+log(2 1)

107 107 10°

Differential entropy of a Gaussian distribution

HE s = (1 + log(2m0%)) = H(e) + log(e) + O(¢)
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