Complex Systems Methods — 3. Statistical complexity of temporal sequences

Eckehard Olbrich

MPI MiS Leipzig

Potsdam WS 2007/08

(ロ) (레) (토) (토) (토) ((이익은

1 / 24

Overview

- Summary Kolmogorov sufficient statistic
- Intuitive notions of complexity
- Statistical complexity
 - Entropy convergence and excess entropy
 - Predicitive information
- Entropy estimation
 - Entropy of a discrete random variable finite sample corrections

2 / 24

Summary Kolmogorov sufficient statistic

Kolmogorv complexity

$$K_{\mathcal{U}}(x|I(x)) = \min_{p:\mathcal{U}(p,I(x))=x} I(p)$$

• Kolmogorov structure function, x^n denotes a string of length n

$$K_k(x^n|n) = \min_{\substack{p : l(p) \le k \\ \mathcal{U}(p,n) = S \\ x^n \in S \subseteq \{0,1\}^n}} \log |S|$$

Kolmogorv sufficient statistic: least k such that

$$K_k(x^n|n) + k \leq K(x^n|n) + c$$
.

- Regularities in x are desribed by describing the set S. Given S the string x is random,
- Algorithmic complexity
 = randomness. But intuitively, complexity
 measure should quantify structure, not randomness. Thus it is related
 to an ensemble and not a single object.

Olbrich (Leipzig) 02.11.2007 3 / 24

Dynamical Systems

all continuous	Partial Differential Equations (PDE's)
discetized space	coupled ordinary differential equations (ODE's)
discretized time	coupled map lattice (CML)
discretized state	cellular automata (CA)

- all dynamical systems either deterministic or stochastic
- Digital computer: Finite state automaton finite number of discrete states

Intuitive notions of complexity — Stephen Wolframs classification of cellular automata

Elementary cellular automata: binary states $\{0,1\}$. Next neighbour interaction. Rules can be coded by numbers $0,\ldots,255$:

- Class 1: Evolution leads to a homogeneous state.
- Class 2: Evolution leads to a set of separated simple stable or periodic structures.
- Class 3: Evolution leads to a chaotic pattern.
- Class 4: Evolution leads to complex localized structures, sometimes long-lived.

5 / 24

Intuitive notions of complexity — Stephen Wolframs classification of cellular automata

Intuitive notions of complexity — Stephen Wolframs classification of cellular automata

Propagation of a single perturbation

class 2 ordered

class 4 "complex"

class 3 chaotic

Statistical complexity — excess entropy

- K(x|I(x)) minimal length of a program, which produces exactly the string x. Most complex strings are algorithmically random.
- Kolmogorov sufficient statistic: program that describes all regularities in x and computes the set S, which containes all strings with the same regularities as in x, but are otherwise random. Algorithmic complexity can be divided in two parts - regularities and randomness.
- Same idea for a time series (infinite sequence) provided with a stationary distribution:
 - Randomness per symbol is given by the entropy rate

$$h_{\infty} = \lim_{n \to \infty} h_n$$
 $h_n = H(X_0|X_{-1}, \dots, X_{-n})$

 Regularities quantified by the excess entropy (Crutchfield) or effective measure complexity (Grassberger)

$$E = \lim_{n \to \infty} E_n$$
 with $E_n = (H_n - n \cdot h_n)$ and $H_n = H(X_n, \dots, X_1)$

Olbrich (Leipzig) 02.11.2007 8 / 24

Entropy convergence and excess entropy

The idea which led originally to this complexity measure was to use the converge rate of the conditional entropy to quantify the complexity of a time series:

fast convergence \to short memory \to low complexity slow convergence \to long memory \to high complexity. Conditional entropies

$$h_n = H(X_0|X_{-1}, \dots, X_{-n}) = H(X_0, X_{-1}, \dots, X_{-n}) - H(X_{-1}, \dots, X_{-n})$$

decrease monotonically. Decay is quantified by the conditional mutual information

$$\delta h_n := h_{n-1} - h_n = MI(X_0 : X_{-n}|X_{-1}, \dots, X_{-n}).$$

◆ロト ◆個ト ◆差ト ◆差ト を めるぐ

9 / 24

Entropy convergence and excess entropy

Excess entropy:

$$E_{N} = H(X_{1}, \dots, X_{N}) - Nh_{N}$$

$$= \sum_{n=0}^{N-1} (h_{n} - h_{N}) \quad \text{using} \quad h_{0} = H(X_{1})$$

$$= \sum_{n=0}^{N-1} \sum_{k=n+1}^{N} \delta h_{k} \quad \text{using} \quad h_{n-1} = \delta h_{n} + h_{n}$$

$$= \sum_{k=1}^{N} k \delta h_{k}$$

The slower the convergence of the entropy the larger the excess entropy. If the sequence is Markov' of order m: $\delta h_n = 0$ for n > m. Thus $E = E_m$.

Olbrich (Leipzig) 02.11.2007

10 / 24

Predictive information

Bialek et al. (2000) proposed to quantify the complexity of a time series by the amount of information which the past tells us about the future

$$I_{pred} = MI(\mathsf{past}:\mathsf{future}) = \lim_{n_p,n_f o \infty} MI(X_{-n_p},\dots,X_0:X_1,\dots,X_{n_f})$$

and called this predictive information.

The predictive information is equal to the excess entropy if the corresponding limits exist:

$$I_{pred} = E$$

Olbrich (Leipzig) 02.11.2007 11 / 24

Predictive information

$$I_{pred} = \lim_{n_{p}, n_{f} \to \infty} MI(X_{-n_{p}}, \dots, X_{-1}, X_{0} : X_{1}, X_{2}, \dots, X_{n_{f}})$$

$$= \lim_{n_{p}, n_{f} \to \infty} \left\{ H(X_{1}, \dots, X_{n_{f}}) + H(X_{-n_{p}}, \dots, X_{0}) - H(X_{-n_{p}}, \dots, X_{0}, \dots, X_{n_{p}}) \right\}$$

$$= \lim_{n_{p}, n_{f} \to \infty} \left\{ E_{n_{f}} + n_{f} h_{n_{f}} + E_{n_{p}+1} + (n_{p}+1) h_{n_{p}+1} - E_{n_{p}+n_{f}+1} - (n_{f}+n_{p}+1) h_{n_{f}+n_{p}+1} \right\}$$

$$= E$$

The excess entropy measures the amount of information which is available from the past for predicting the time series.

Olbrich (Leipzig)

02.11.2007

12 / 24

Causal states

Causal equivalence: Two past sequences $x_{-\infty}^0=x_0,x_{-1},\dots$ and $x'_{-\infty}^0=x'_0,x'_{-1},\dots$ are causal equivalent, if they have the same future, i.e. $p(x_1^\infty|x_{-\infty}^0)=p(x_1^\infty|x'_{-\infty}^0)$. The equivalence classes are called *causal states*. This notion was introduced by James P. Crutchfield et al. They called the transition graph between the causal states an ϵ -machine. In general it seems to be a subclass of hidden Markov models. Crutchfield and Young (1989): Statistical complexity C_μ as the entropy of the stationary distribution over the states. In general there is

$$C_u \geq E$$
.

Grassberger (1986) called it *set complexity* in the context of regular languages.

In general: The *excess entropy* provides a **lower bound** for the amount of information necessary for an **optimal prediction**.

Excess entropy — some examples

- Sequence with period n: $h_m=0$ for $m\geq n$, in particular $h_\infty=0$. The entropy $H_{m\geq n}=\log n$ remains constant for $m\geq n$, thus $E=\log n$. All periodic sequences of the same length have the same complexity according to this measure. (Alternative: transient information introduced by Crutchfield and Feldman).
- Markov chain: $h_{\infty} = h_1$. $E = \delta h_1 = h_0 h_1 = MI(X_{n+1} : X_n)$.
- Chaotic maps: Usually exponential decay of h_n finite E.
- Feigenbaum point: $h_{\infty} = 0$, but $h_n \propto 1/n$, thus E diverges.

<ロ > < 回 > < 回 > < 巨 > くき > しき > しき の < ○

14 / 24

Complexity for the period doubling route to chaos

From Crutchfield/Young 1990. Computation at the onset of chaos.

4 □ → 4 同 → 4 目 → 4 目 → 9 Q ○

15 / 24

Excess entropy and attractor dimension

Deterministic system with continous state observables: The entropy $H_m(\epsilon) = H(X_1, \dots, X_m; \epsilon)$ scales with respect to the resolution ϵ :

$$H_m(\epsilon) = H_m^c - m \log \epsilon + \mathcal{O}(\epsilon)$$

$$H_m(\epsilon) = const - D \log \epsilon + \mathcal{O}(\epsilon)$$

Because $h_{\infty} = h_{KS}$ does not depend on ϵ we have

$$E \propto -D \log \epsilon$$
.

The better one knows the initial conditions of the system the better the system can be predicted.

◆ロト ◆個ト ◆差ト ◆差ト 差 りゅう

16 / 24

References

- Peter Grassberger, Toward a quantitative theory of self-generated complexity, International Journal of Theoretical Physics, 25 (1986), 907-938.
- James P. Crutchfield and David P. Feldman, Regularities unseen, randomness observed: Levels of entropy convergence Chaos, 13 (2003), 25-54.
- William Bialek, Ilya Nemenman and Naftali Tishby, Predictability, complexity, and learning. Neural Computation, 13 (2001), 2409-2463.
- Remo Badii and Antonio Politi, Complexity Hierarchical structures and scaling in physics, Cambridge University Press, 1997.

Entropy of a discrete randomm variable — finite sample corrections

Reference: P. Grassberger, Entropy Estimates from Insufficient Samplings, arXiv:physics/0307138v1

• N data points randomly and *independently* distributed on M boxes. The number n_i of points in each box is a random variable with an expectation value $z_i := E[n_i] = p_i N$. Their distribution is binomial

$$P(n_i; p_i, N) = \binom{N}{n_i} p_i^{n_i} (1 - p_i)^{N - n_i}$$

• For $p_i \ll 1 \quad \forall i$ the n_i can be assumed to be Poisson distributed

$$P(n_i; z_i) = \frac{z_i^{n_i}}{n_i!} e^{-z_i}$$

Olbrich (Leipzig) 02.11.2007 18 / 24

Entropy of a discrete random variable — finite sample corrections

Entropy

$$H = -\sum_{i=1}^{M} p_i \log p_i = \ln N - \frac{1}{N} \sum_{i=1}^{M} z_i \ln z_i$$

Naive estimator

Olbrich (Leipzig)

$$\hat{H}_{naive} = \ln N - \frac{1}{N} \sum_{i=1}^{M} n_i \ln n_i$$

In general the estimator is biased, i.e.

$$\Delta H := E[\hat{H}] - H \neq 0$$
. $\Delta H_{naive} < 0$.

02.11.2007

Entropy of a discrete random variable — finite sample corrections

• In the limit of large N and M each contribution $z_i \ln z_i$ will be statistically independent and can be estimated as function of n_i :

$$z_i \ln z_i \approx z_i \, \hat{\ln} \, z_i = n_i \phi(n_i)$$
 $E[z_i \, \hat{\ln} \, z_i] = \sum_{n_i=1}^{\infty} n_i \phi(n_i) P(n_i; z_i)$.

Implizit assumption: $n_i = 0$ gives no information about p_i .

Estimator

$$\hat{H}_{\phi} = \ln N - \frac{1}{N} \sum_{i=1}^{M} n_i \phi(n_i)$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かり(で

Olbrich (Leipzig) 02.11.2007 20 / 24

Finite sample corrections — Grassbergers Result 1

Grassbergers result:

$$E[n\psi(n)] = z \ln z + zE_1(z)$$

with the digamma function

$$\psi(x) = rac{d \ln \Gamma(x)}{dx}$$
 and $E_1 = \Gamma(0,x) = \int_1^\infty rac{e^{-xt}}{t} dt$.

• For large z $zE_1(z) \approx e^{-z}$, thus neglecting this term gives the estimator

$$\hat{H}_{\psi} = \ln N - \frac{1}{N} \sum_{i=1}^{M} n_i \psi(n_i) .$$

Olbrich (Leipzig) 02.11.2007 21 / 24

Finite sample corrections — Comparison with other results

- Approximations for the digamma function leads to known estimators:
 - $\psi(x) \approx \ln x$: naive estimator
 - 2 $\psi(x) \approx \ln x 1/(2x)$: Miller correction
 - $\psi(x) < \ln x 1/(2x) < \ln x$ leads to $\hat{H}_{\psi} > \hat{H}_{Miller} > \hat{H}_{naive}$
- Grassbergers best estimator:

$$\hat{H}_G = \ln N - \frac{1}{N} \sum_{i=1}^M n_i G_{n_i}$$

with

$$G_n = \psi(n) + (-1)^n \sum_{k=1}^{\infty} \frac{1}{(n+2k)(n+2k+1)}$$

or
$$G_1 = -\gamma - \ln 2$$
 $G_2 = 2 - \gamma - \ln 2$ $G_{2n+1} = G_{2n}$ and $G_{2n+2} = G_{2n} + \frac{2}{2n+1}$ for $n \ge 1$.

Olbrich (Leipzig)

Finite sample corrections — Comparison between different corrections

Note that $\psi(x) + \frac{(-1)^n}{n(n+1)}$ corresponds to an approximation of

$$G_n = \psi(n) + (-1)^n \sum_{k=1}^{\infty} \frac{1}{(n+2k)(n+2k+1)}$$

with considering only the k=0 term in the sum.

Olbrich (Leipzig) 02.11.2007 23 / 24

Test — Entropy of a Gaussian distribution

Differential entropy of a Gaussian distribution

$$H_{Gauss}^{\mathcal{C}} = \frac{1}{2}(1 + \log(2\pi\sigma^2)) = H(\epsilon) + \log(\epsilon) + \mathcal{O}(\epsilon)$$

40 > 40 > 42 > 42 > 2 > 900

24 / 24