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Summary of Entropy and Information

Random variables X ,Y with values x ∈ X , y ∈ Y
Entropy H(X ) = −

∑
x∈X p(x) log p(x) = Ep(x)[1/ log(p(x))]

Conditional entropy
H(X |Y ) = H(X ,Y )− H(Y ) = Ep(x ,y)[1/ log(p(y |x))]

Mutual information

MI (X : Y ) = H(X )− H(X |Y ) =
∑

x∈X ,y∈Y
p(x , y) log

p(x , y)

p(x)p(y)

Relative entropy D(p||q) =
∑

x∈X p(x) log p(x)
q(x)

Mutual information as relative entropy

MI (X : Y ) = D(p(x , y)||p(x)p(y))
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Convex functions and Jensens Inequality

Definition A function f(x) is said to be convex over an interval (a, b) if
for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

A function is said to be strictly convex if equality holds only if λ = 0 or
λ = 1.
A function f is concave if −f is convex.
Examples x2,|x |,ex ,x log(x) for x ≥ 0 are convex functions, log x or

√
x

are concave functions.
Theorem Jensens inequality If f is a convex function and X is a random
variable,

EP [f (X )] ≥ f (EP [X ]) .

If f is strictly convex equality implies X = EP [X ] with probability 1 (i.e. X
is a constant).
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Information inequality

Now we are able to prove the non-negativity of the relative entropy and
the mutual information:

Theorem D(p||q) ≥ 0 with equality iff p(x) = q(x) ∀x .

Corollary: Non-negativity of the mutual information

MI (X : Y ) = D(p(x , y)||p(x)p(y)) ≥ 0

MI (X : Y ) = 0 implies statistical independence, i.e. p(x , y) = p(x)p(y).

Corollary: The uniform distribution over the range of X u(x) = 1/|X | is
the maximum entropy distribution over this range.

D(p(x)||u(x)) =
∑
x∈X

p(x) log
p(x)

u(x)
= log |X |−H(X ) ≥ 0 ⇒ H(X ) ≤ log |X |
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Conditional mutual information

Lets have three random variables X ,Y ,Z we can ask, what we learn about
X by observing Z knowing already Y . Answer:

MI (X : Z |Y ) = H(X |Y )− H(X |Y ,Z ) =
∑
x ,y ,z

p(x , y , z) log
p(x , y |z)

p(x |z)p(y |z)

Properties:

1 Symmetry MI (X : Z |Y ) = MI (Z : X |Y )

2 Non-negativity

MI (X : Z |Y ) =
∑

z

p(z)D(p(x , y |z)||p(x |z)p(y |z)) ≥ 0

3 X is conditional independent on Z given Y, i.e. p(x |y , z) = p(x |y),
denoted by X⊥Z |Y , if and only if MI (X : Z |Y ) = 0.
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Chain rules

Entropy
H(X ,Y ) = H(X ) + H(Y |X )

Mutual information

MI (X : Y ,Z ) = MI (X : Y ) + MI (X : Z |Y )

Relative Entropy:

D(p(x , y)||q(x , y)) = D(p(x)||q(x)) + D(p(y |x)||q(y |x))
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Stationary stochastic processes

A stochastic process is indexed sequence of random variables. The
process is characterized by joint probabilities
Pr{(X1,X2, ...,Xn) = (x1, x2, . . . , xn)} = p(x1, . . . , xn), (x1, . . . , xn) ∈
X n.

A stochastic process is said to be stationary if the joint distribution
of any subset of random variables is invariant with respect to shifts in
the time index; that is

Pr{X1 = x1,X2 = x2, . . . ,Xn = xn}
= Pr{X1+l = x1,X2+l = x2, . . . ,Xn+l = xn}

for every n and every shift l and for all x1, x2, . . . , xn ∈ X .
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Entropy rate

Entropy rate as entropy per symbol:

h∞ = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

Entropy rate as conditional entropy given the past:

h′∞ = lim
n→∞

H(Xn|Xn−1, . . . ,X1)

Theorem: For a stationary stochastic process the limits exists and are
equal.

Can be proven using
Theorem: (Cesáro mean) If an → a and bn = 1

n

∑n
i=1 ai , then bn → a.
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Markov chains

Definition A discrete stoachstic process X1,X2, . . . is said to be a Markov
chain or a Markov process if for n = 1, 2, . . .

Pr(Xn+1 = xn+1|Xn = xn, . . . ,X1 = x1) = Pr(Xn+1 = xn+1|Xn = xn)

or in a shortened notation:

p(xn+1|xn, . . . , x1) = p(xn+1|xn) .

for all x1, x2, . . . , xn ∈ X .
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Markov chains

The past is conditional independent of the future, given the present:

MI (Xn+1 : Xn−1, . . . ,X1|Xn) = 0 .

Joint probability distribution factorizes:

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1)

Transition matrix Pij = Pr(Xn+1 = j |Xn = i).

Dynamics

p(xn+1) =
∑
xn

p(xn)Pxn,xn+1 .

Stationary distribution p(xn+1) = p(xn) = µ(x)

Entropy rate

h∞ = H(X2|X1)

= −
∑
ij

µiPij log Pij
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The entropy rate of natural language

Consider English as a stationary ergodic process

Alphabet with 26 letters and the space symbol

Letters occur non-uniform (E with 13%, Q and Z with 0.1%). Most
frequent correlations between T and H or Q and U.

Entropy rates: Zeroth order log 27 = 4.76 bits per letter. Second order
Markov approximation 4.03 bits per letter and fourth order Markov
approximation 2.8 bits per letter.

Entropy rate from guessing the next letter by humans: 1.3 bits per
letter (Shannon 1950).

Gambling estimate with 12 subjects and a sample of 75 letters from
the text used by Shannon: 1.34 bits per letter (Cover and King 1978)
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Algorithmic complexity

Definition The Kolmogorov complexity KU (x) of a binary string x with
respect to a universal computer U is defined as

KU (x) = min
p:U(p)=x

l(p)

with l(p) the length of the string p and running the program p on the
universal computer U produces the output x and halts.

Theorem (Universality of Kolmogorov complexity) If U is a universal
computer, for any other computer A there exists a constant cA such that

KU (x) ≤ KA(x) + cA

for all strings x ∈ {0, 1}∗, and the constant cA does not depend on x .
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Upper and lower bounds

Conditional Kolmogorov complexity knowing l(x)

KU (x |l(x)) = min
p:U(p,l(x))=x

l(p)

Upper bounds

K (x |l(x)) ≤ l(x) + c

K (x) ≤ K (x |l(x)) + log∗ l(x) + c

with log∗ n = log n + log log n + log log log n + . . . as long as the
terms are positive.

Lower bound: The number of strings x with complexity K (x) < k
satisfies

|K (x) < k| < 2k

because there are only 2k − 1 strings and therefore possible programs
with length k − 1.
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Algorithmic Randomness

A sequence x1, x2, . . . , xn is said to be algorithmically random if

K (x1, x2, . . . , xn|n) ≥ n .

There exists for each n at least one sequence xn such that

K (xn|n) ≥ n

A string is called incompressible if

lim
n→∞

K (x1, x2, . . . , xn|n)

n
= 1 .

Strong law of large numbers for incompressible binary sequences

1

n

n∑
i=1

xi →
1

2
,

i.e. the proportion of 0’s and 1’s in any incompressible string are
almost equal.
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Algorithmic complexity and entropy

Let the stochastic process {Xi} be drawn i.i.d. according to the probability
distribution p(x), x ∈ X , where X is a finite alphabet. There exists a
constant c such that

H(X ) ≤ 1

n

∑
xn

p(xn)K (xn|n) ≤ H(X ) +
(|X | − 1) log n

n
+

c

n

for all n. xn is denoting x1, . . . , xn. Consequently

E [
1

n
K (X n|n)] → H(X )

More general (Brudno’s Theorem): The entropy rate of an ergodic
dynamical system is equal to the rate of the Kolmogorov complexity of
almost all of its trajectories encoded by its generating partition.
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Kolmogorov sufficient statistic

The Kolmogorov structure function Kk(xn|n) of a binary string x ∈ {0, 1}n
is defined as

Kk(xn|n) = min
p : l(p) ≤ k
U(p, n) = S

xn ∈ S ⊆ {0, 1}n

log |S |

The set S is the smallest set that can be described with no more than k
bits and which includes xn. U(p, n) = S means, that running p with data
n on the computer U will print out the indicator function of the set S .
For a given small constant c, let k∗ be the least k such that

Kk(xn|n) + k ≤ K (xn|n) + c .

The corresponding program p∗∗ that prints out the indicator function on
the corresponding set S∗∗ is a Kolmogorov minimal sufficient statistic for
xn.
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Further remarks

Independently developed by Solomonoff (1964), Kolmogorov (1965),
Chaitin (1966)

The Kolmogorov complexity is uncomputable (related to the Halting
problem, Gödels incompleteness theorem, ...).

Further reading: An introdution to Kolmogorov Complexity and Its
Applications by Ming Li and Paul Vitányi, Springer 1997
Stochastic Complexity in Statistical Inquiry by Jorma Rissanen, World
Scientific, 1989 — Minimum description length
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