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Interpretations of probability

Objective probabilities: Probabilities describe a property of the
“objective world” and are measured by relative frequencies —
frequentist

Subjective probabilities: Probabilites describe the degree of
uncertainty about the occurence of an event — Bayesian

Kolmogorov: Probability is a non-negative measure normalized to
unity on a σ-algebra of elementary events
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Random variable

Probability space (Ω,A,P)

Set of possible events Ω: Set of outcomes of an random experiment — in
the case of a coin toss Ω = (heads, tails). Elements denoted
by ω ∈ Ω.

σ-algebra of subsets A: Set of subsets of Ω.

Probability measure P: Each set of events A ⊆ A has a probability
0 ≤ P(A) ≤ 1. P(Ω) = 1.

Random variable X
Measureable function X : (Ω,A) → S to a measurable space S (frequently
taken to be the real numbers with the standard measure). The probability
measure PX−1 : S → R associated to the random variable is defined by
PX−1(s) = P(X−1(s)). A random variable has either an associated
probability distribution (discrete random variable) or probability density
function (continuous random variable).
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Discrete random variable

A random variable X is said to be discrete if the set {X (ω) : ω ∈ Ω} (i.e.
the range of X ) is finite or countable.

Alphabet: Set X of values of the random variable X .

Probability: p(x) = P(X = x), x ∈ X .

Normalization: ∑
x∈X

p(x) = 1

Expectation value of X :

EP [X ] =
∑
x∈X

xp(x)

Olbrich (Leipzig) 19.10.2007 5 / 14



Continuous random variable

A random variable X is said to be continuous if it has a cumulative
distribution function which is absolutely continuous.

Probability density p(x)

P(a ≤ X ≤ b) =

∫ b

a
p(x)dx .

Cumulative distribution

P≤(x) = P(X ≤ x) =

∫ x

−∞
p(y)dy

Normalization ∫ xmax

xmin

p(x)dx = 1 .
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Expectation value

E [X ] =

∫ ∞

−∞
xp(x)dx

Median x1/2

P≤(x1/2) =
1

2

Change of variable y = f (x) (f invertible)

p(x)dx = q(y)dy ⇒ q(y) =
p(x)

df /dx

∣∣∣∣
x=f −1(y)
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Entropy

Shannon 1948: How much choice is involved in the selection of an
event with n possibilities and probabilities p1, . . . , pn?

If we have a random variable X with a probability distribution p(x)
the uncertainty about the outcome x of a measurement of X is given
by the entropy

H(X ) = −
∑
x∈X

p(x) log p(x) .

Entropy can be considered as a measure of variety or disorder
(“objective”) or as a measure of uncertainty (“subjective”)

Information reduces uncertainty, i.e. it can be quantified by
differences between uncertainties, that is: entropies.

The entropy can be considered as the expextation value of log 1/p(x):

H(X ) = EP [log
1

p(x)
] .
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Uniqueness of entropy

Are there other functions, which are suitable as a measure of uncertainty?

Theorem: The following three conditions determine the function
H(p1, . . . , pn) up to a multiplicative constant, whose value serves only to
determine the size of the unit of information.

1 H(p, 1− p) is a continuous function of p ∈ [0, 1].

2 Hn(p1, . . . , pn) is a symmetric function of all of its arguments.

3 If pn = q1 + q2 > 0 then

H(p1, p2, p3, . . . , q1, q2) = H(p1, p2, p3, . . . , pn) + pnH

(
q1

pn
,
q2

pn

)
.

The last property called “additivity” is dropped for some entropies such as
the Renyi entropies.
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Properties of the entropy

1 H(X ) ≥ 0, because 0 ≤ p(x) ≤ 1 implies that log 1/p(x) ≥ 0.

2 Hb(X ) = (logb a)Ha(X ), i.e. entropy in nats He(X ) = (ln 2)H2(X )
with H2(X ) the entropy in bits, because logb p = logb a loga p.

3 Binary random variable, X = 0 with p and X = 1 with 1− p.

H(p) := H(X ) = −p log p − (1− p) log(1− p) .

H(p) = 0 for p = 0 and p = 1 and H(p) maximal for p = 1/2.
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Conditional entropy

Knowing Y might reduce the uncertainty about X if both are not
statistically independent.

The uncertainty of X having already observed Y = y can be
expressed as

H(X |Y = y) = −
∑
x∈X

p(x |y) log p(y |x) .

This can be averaged also over Y giving

H(X |Y ) = H(X ,Y )− H(Y ) .

H(X |Y ) is called conditional entropy.

Chain rule:
H(X ,Y ) = H(X ) + H(Y |X ) .
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Mutual information

The information, .i.e. the reduction of unvertainty, about X provided by
knowing already Y can be quantified using the mean difference between
the uncertainty of X knowing Y and without knowing Y :

MI (X : B) = H(X )− H(X |Y )

= H(X ) + H(Y )− H(X ,Y )

=
∑

x∈X ,y∈Y
p(x , y) log

p(x , y)

p(x)p(y)

This difference is called the mutual information between X and Y . It can
be considered also as a measure of correlation or statistical dependence
between X and Y .
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Properties of the Mutual Information

Definition: The relative entropy or Kullback-Leibler divergence between
two distributions p(x) and q(x) is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

= Ep

[
p(x)

q(x)

]
Proposition: The relative entropy is a non-negative quantity D(p||q) ≥ 0.

It becomes zero if and only if p = q.
Mutual information: The mutual information can be expressed as the

Kullback-Leibler divergence between the joint distribution
p(x , y) and product of its marginals p(x)p(y).

MI (X : Y ) = D(p(x , y)||p(x)p(y)) .

Corollary: The mutual information is non-negative:

MI (X : Y ) ≥ 0 .

The mutual information is zero if and only if X and Y are
statistically independent.
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Differential entropy

Entropy of a continous random variable X (also continuius entropy)

h(X ) = −
∫ ∞

−∞
p(x) log p(x)

The differential entropy might be negative.

The differential entropy depends on the scale of measurement
h(aX ) = h(X ) + log |a|.
If the density p(x) of the random variable X is Riemann integrable,
then

H(X ε) + log ε → h(X ) , as ε → 0 .
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