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1 Introduction

The material presented in this talk is contained in [Fri09], [Fri].
Historically, the paradigm shifts

concrete submanifolds of Rn
%%

abstract manifolds

concrete sets of symmetries
%%

abstract groups

were very important for the development of mathematics. As another part of
mathematics, convex sets are defined as particular classes of subsets of vector
spaces, therefore they belong on the left side. This raises the question:

Question 1.1. Does the concept of convexity also admit an abstract coun-
terpart?

This question is answered in the positive by the theory of convex spaces.
This theory

• unifies aspects of convex geometry and functional analysis (Banach spaces)
with aspects of order theory (semilattices).

• reveals a rich intrinsic geometry of convex sets.

• provides a nice category for the study of convex sets (symmetric monoidal
closed, complete and cocomplete).

Disclaimer: Almost none of this material is original research. Convex spaces
have been discovered and investigated several times, including the works by

• von Neumann, Morgenstern [vNM07] in the context of economics,

• Stone [Sto49],
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• Gudder [Gud79] in the context of quantum mechanics,

• Świrszcz [Świ].

• Flood [Flo81],

Overview: After defining convex spaces, two classes of convex spaces (geo-
metrical, combinatorial) are studied in some detail. Finally, we consider some of
the intrinsic geometry of convex space in terms of an intrinsic notion of distance
and a separation theorem of Hahn-Banach type.

2 Definition of convex spaces

Definition 2.1. A convex space is a set C together with a family (ccλ)λ∈(0,1)

of binary operations

ccλ : C × C −→ C, λ ∈ (0, 1)

satisfying the conditions

• idempotency:
ccλ(x, x) = x (1)

• parametric commutativity:

ccλ(x, y) = cc1−λ(y, x) (2)

• deformed parametric associativity:

ccλ(ccµ(x, y), z) = cceλ(x, cceµ(y, z)) (3)

with

λ̃ = λµ, µ̃ =

{
λ(1−µ)
1−λµ if λµ 6= 1

arbitrary if λ = µ = 1.

It is known that the vector space axioms imply all equational properties that
one expects linear combinations to have. The same holds for convex spaces and
convex combinations:

Theorem 2.2. The relations (1)-(3) are a generating set of all relations that
convex combinations in vector spaces have. In other words, an equation between
convex combinations of free variables is universally valid if and only if it follows
from (1)-(3).

Proof. Category-theoretic universal algebra.

Due to this result, it is convenient to replace the notation ccλ by the usual
notation for convex combinations:

λx+ (1− λ)y ≡ ccλ(x, y)
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3 Convex spaces of geometric type

The obvious prime example of a convex space is a convex subset of a real vec-
tor space. For that reason, a convex space is said to be of geometric type
whenever it can be written as a convex subset of a real vector space.

Theorem 3.1. A convex space C is of geometric type if and only if the cancel-
lation condition

λx+ (1− λ)y = λx′ + (1− λ)y =⇒ x = x′ (4)

holds for all x, x′, y ∈ C.

Example 3.2. Let (E, || · ||) be a normed vector space. Then the unit ball

B1 ≡ {x ∈ E | ||x|| ≤ 1}

is a convex space in E. Conversely, the convex space B1 determines the norm
via

||x|| = 1
sup{r ∈ R>0 | rx ∈ B1}

.

Therefore, two mathematical structures (vector space, norm) can be subsumed
by a single one (convex space).

Example 3.3. Given two polytopes P,Q ⊆ Rn, their convex combinations can
be defined in analogy with Minkowski sums as the new polytope

λP + (1− λ)Q ≡ {λx+ (1− λ)y, x ∈ P, y ∈ Q} .

Therefore, the set of polytopes in Rn becomes a convex space in its own right.
Since the cancellation law (4) holds for polytopes1, the convex space of polytopes
can be embedded into a vector space.

4 Convex spaces of combinatorial type

A different extreme case occurs when the cancellation condition (4) is violated
so much that all convex combinations are independent of the weight λ.

Definition 4.1. A convex space C is said to be of combinatorial type when-
ever all convex combinations

λx+ (1− λ)y

are independent of λ.
1Sketch of proof: suppose that λP + (1− λ)Q = λP ′ + (1− λ)Q. This implies nλP + (1−

λ)Q = nλP ′ + (1− λ)Q for any n ∈ N. Then P = P ′ follows by choosing n large enough.
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Therefore, a convex space of combinatorial is nothing but a set C together
with a single binary operation

∧ : C × C −→ C

which is idempotent by (1), commutative by (2) and associative by (3). By
defining an order structure as

x ≤ y ⇔ x = x ∧ y

it can be directly verified that such a C is nothing but a meet-semilattice, i.e. a
partially ordered set such that each pair of elements has a greatest lower bound.
(Using meets instead of joins is purely conventional.)

Definition 4.2. Given any convex space C, a face of C is a convex subset
D ⊆ C that is extremal in the sense that

λx+ (1− λ)y ∈ D =⇒ x ∈ D, y ∈ D

Example 4.3. Let F = {0, 1} be the meet-semilattice defined by

0 ∧ 1 = 0.

As a partially ordered set, 0 ≤ 1. The faces of {0, 1} are ∅, {1} and {0, 1}.
{1} ⊆ {0, 1} is the universal face in the following sense: given any other con-

vex space C, a subset D ⊆ C is a face of C if and only if it has the form d−1({1})
for some convex map d : C → {0, 1}. This is analogous to the specification of
a subset B ⊆ A of some set A via its characteristic function b : A → {0, 1} as
B = b−1({1}).

5 Convex spaces of mixed type

A generic convex space is neither of geometric type nor of combinatorial type.
Nonetheless, the following classification result shows that every convex space
can be decomposed into a combinatorial part and a geometrical part.

Theorem 5.1 (classification, informal version). Every convex space C can be
written as a bundle

C
p // // C̃

where C̃ is of combinatorial type and all the fibers p−1(c) for c ∈ C̃ are of
geometric type.

6 The intrinsic geometry of convex spaces

Convex spaces have a surprisingly rich intrinsic geometric structure. Two facets
of this structure are considered here: an intrinsic notion of distance and a
separation theorem of Hahn-Banach type.
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Definition 6.1. Given a convex space C of geometric type, define a distance
function d : C × C → R≥0 by

dC(x, y) ≡ sup {|f(x)− f(y)|, f : C → [0, 1] convex}

Under suitable boundedness assumptions on C, this distance function is
actually a metric. In particular, the triangle inequality is straightforward to
check.

Example 6.2. As an example of how much information this metric can contain,
consider the convex set of positive matrices in Mn(K) for K = R or K = C that
are of unit trace:

C = {A ∈Mn(K) |A ≥ 0, tr(A) = 1}.

These sets are important in physics as state spaces of quantum systems. If v
is a unit vector, the projection onto v, denoted by Pv, lies in C. Given unit
vectors v and w, their distance within C can be calculated to be√

1− |〈v, w〉|2 = dC(Pv, Pw)

Therefore, the structure of C as a convex space contains information about the
scalar product in Rn. This works the same way for any Hilbert space instead of
Rn.

The next theorem mentions convex subsets with convex complement. For
any convex subset of Rn, a convex subset with convex complement defines a
half-space in that set. Therefore one can think of convex subsets with convex
complement as a generalization of half-spaces.

Theorem 6.3 (Hahn-Banach separation, fig. 1). Given any convex space C and
two convex subspaces D1, D2 ⊆ C that are disjoint,

D1 ∩D2 = ∅,

there always exists a convex subspace S such that its complement is also convex
and the inclusions

D1 ⊆ S, D2 ⊆ C \ S

hold.

Idea of proof: consider pairs of subspaces (E1, E2) such that Di ⊆ Ei and
E1 ∩ E2 = ∅. The set of all such pairs is non-empty, and can be ordered
by inclusion. Every ascending chain has an upper bound given by taking the
union of the whole chain for each component. Therefore by Zorn’s lemma, there
exists a pair (E1, E2) having these properties which is maximal with respect
to inclusion. A geometric argument shows that this pair cannot be maximal
if E1 ∪ E2 6= C. But since the pair is assumed to be maximal, it follows that
E1 ∪ E2 = C, so that one can set S = E1, which contains D1. Then the
complement C \ S = E2 is automatically also convex and contains D2.
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Figure 1: Illustration of theorem 6.3. The dashed line itself may belong to S
completely, not at all, or just for some part.
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